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High-field spin-lattice relaxation of methyl groups: relation
to neutron scattering
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Received 2 March 1992, in final form 8 June 1992

Abstrael The modern theory of high-field spinattice relaxation is applied to methyl
group rotation. It is shown that the same time correlation functions are observed
in nuclear magnetic resonance (NMR) relaxation experiments and in inelastic neutron
scattering (INS) experiments. A linear relationship is derived between the spectral function
S(w) observed in INS and the spin-lattice relaxation rate Tl'l(w) as a function of the
Larmor frequency. The similarities between the two methods are pointed out. For CDs,
NMR experiments on systems with high tunnelling frequencies yield the width of the quasi-
elastic E* « Eb line of INs. For CHj, the effect of intermolecular dipolar interactions
on the spin-lattice relaxation time T} is calculated using a series expansion in v/ R,
where r is the radius of the methyl group and R; is the distance of the considered
prolon i from the centre of the CHj group. It is shown that for systems with high
tunnelling frequencies T} is mainly determined by intermolecular dipolar interactions,
whereas these have a negligible effect on spin conversion. T3 experiments on diluted
CHj-containing systems vield the width of the inelastic A « E line, also in the so-called
‘quasi-classical’ temperature regime.

1. Introduction

The rotational dynamics of light molecules like hydrogen or methane and molecular
groups like methyl groups has been investigated in a variety of experimental and
theoretical studies in the past [1-3]. A common feature of all these systems
undergoing rotational tunnelling is that they consist of end-standing identical particles.
Owing to the indistinguishability of identical particles, minima of the rotational
potential have to be strictly equivalent. In the case of methyl groups, on which
we will focus in the following, the rotational potential has to be invariant under
permutations of the three end-standing protons (CH;) or deuterons (CD,). For our
purpose it is sufficient to disregard odd permutations corresponding to the exchange
of two particles. This means that we can restrict ourselves to ‘right-handed’ or ‘left-
handed’ states of methyl groups [4], since the barriers for transitions between these
states are outside the energy range considered here. Consequently, the Hamiltonian
has the symmetry group C, (which is isomorphic to the permutation group A,), and
all eigenstates can be classified according to the irreducible representations I" of G,
ie. ' € {A,E*,E®}. We shall call I the ‘symmetry’ or ‘rotor symmetry’ in the
following.

The eigenstates of the Hamiltonian describing the rotational motion of the methyl
groups will be denoted as [vI'), where v is a librational quantum number and T
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the symmetry. States |[vE?) and |vEP) are degenerate, the degeneracy being of
Kramers type [5], and are different in energy from states [ivA) by a separation
A, (:= EE - E»). The ground state of the spectrum of the rotational Hamiltonian
is |0A) (cf figure 1). The splitting A, (= Ef — E{') typically ranges from 0.1 to
100 eV for CH, whereas the lowest librational energy E;, i.e. the energy difference
between states with » = 1 and v = 0, is of the order 5 to 15 meV. Furthermore,
the signs of the splittings A , alternate with the librational quantum number v (A,
is negative), and for sufficiently high barriers of the rotational potential |A,| > |A]
holds.

126, —
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The main difference between CH,; and CD; experiencing the same rotational
potential lies in the increase of the moment of inertia @ by a factor of two when
CH, is substituted by CD;. Thus, in units of the rotational constant B (B = k?/20,
B(CH;) ~ 647 peV, B(CD;) ~ 323.7 ueV), CD; ‘sees’ a potential of doubled
height, which decreases the ground-state ‘tunnelling’ splitting A, by factors of 10-50
relative to CH; (A, is exponentially small in the potential barrier height).

The symmetry arguments given above also hold in the presence of coupling of the
rotational motion of the methyl groups to other spatial degrees of freedom, e.g. in the
presence of coupling to phonons. Physically, this means that phonons cannot induce
transitions between states of different symmetry I but only between states of the same
symmetry and different librational quantum numbers v. Thus, the symmetry I is a
constant of motion with respect to any pure spatial operator. This fact distinguishes
rotational tunnelling systems qualitatively from other (e.g. translational) tunnelling
systems where phonons or electrons are able to induce transitions between the tunnel
split states. This means that in methyl-containing compounds quantum effects are
observable up to temperatures T » A, and the energy scale for which dissipation
becomes important is given by the librational energy.

Interactions that are able to change the rotor symmetry I" are the spin-dependent
dipolar interaction among the particles, the interaction of the quadrupolar moment
of the deuterons with the electric field gradients in the case of CD; or the spin-
dependent interaction of the protons or deuterons with neutrons. The weak dipolar
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and quadrupolar interactions are considered to be responsible for the equilibration
of the symmetry species of rotational tunnelling systems (conversion) [6-9].

These spin-dependent interactions allow the observation of transitions between
different rotational states and the influence of dissipation on these. Typical
observations of inelastic neutron scattering (INs) experiments might be summarized
in the following way [1-3]. At low temperatures (T < Ey;,} usually three sharp lines
are observed, two of which are located at energy transfers A, These correspond
to A—E transitions and allow the determination of A, The third line with zero
average energy transfer originates from E* — E® transitions and from symmetry-
conserving transitions I' — . With increasing temperature, all lines broaden and
the inelastic tunnelling (A — E) lines shift towards zero energy transfer. (Also
a positive shift at low temperatures has been observed [10].) Often, shift and
broadenings in this temperature range (T < E;;) follow an Arrhenius law with
an apparent activation energy of the order of the librational energy E;,. At elevated
temperatures (1" ~ E);) ail three lines merge into a single broad quasi-elastic line;
the activation energy of the broadening increases with temperature. Usually all lines
are to an excellent approximation described by Lorentzians. In a few experiments the
E?* — E® line has been found to be narrower than the inelastic tunnelling lines at low
temperatures [11, 12].

In most theoretical studies of the temperature dependence of rotational tunnelling
[13-15] the coupling of the rotor to the phonons is treated in perturbation theory.
The temperature dependence of the broadening is found to be librationally activated
in second [14] and fourth [15] order. The increase of the activation energy might
partly be understood from perturbation theory via phonon-induced transitions to the
second librational states. However, the ‘high-temperature’ activation energy, which
has often been found experimentally [16, 17] and is connected in some way to the
potential barrier height, seems not to be explainable by a perturbational approach
to the problem. The width of the E* — E® line has been found to be narrower
than the widths of the inelastic (A — E) tunnelling lines in a more careful second-
order perturbational calculation [18], in qualitative agreement with the mentioned
experiments,

Besides neutron scattering, nuclear magnetic resonance (NMR) experiments allow
the measurement of line broadenings over a wide temperature range and also the
determination of the splitting A, in some cases [19-21]. However, the relations
between the two types of experiments seem not to be obvious.

It is the purpose of the present paper to show the connections between INs and
high-field NMR relaxation experiments on methyl-containing compounds. Therefore,
we briefly recall the main features of the theory of the temperature dependence
of INs experiments in the next section. In section 3, we apply the standard theory
of high-field nuclear spin relaxation [22, 23] to CH; and CD;. It will be shown
that INS and NMR relaxation experiments exhibit a number of similarities. The
correspondence between quantities measured in INS or NMR relaxation is worked
out for some examples of possible future experiments. Furthermore, the importance
of intermolecular dipolar interactions in the case of CH; will be pointed out and their
influence on the spin-lattice relaxation times is calculated approximately. Finally, we
discuss our results in section 4.
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2. The temperature-dependent scattering function

In this section we briefly. recall the main results of the theory of inelastic neutron
scattering on methyl groups. If we assume that the only scattering centres are methyl
groups, we can write for the incoherent scattering function of a powder sample [15,
24]:

S@uw) = Y fu(@ [ atemigneeminao) e
n=0 -

where we have collected all information concerning the scattering event in the
structure factors f,(Q) (spin matrix, scattering length, etc). Furthermore, f,(Q)
represents the nth term of a series expansion in {Qr)? [25], where Q is the modulus
of the scattering vector @ and r is the radius of the methyl group (r ~ 1 A).
Finally, ¢ is the methyl rotation angle and {A) denotes a thermal average, i..
(A} = Tr[Aexp{—GH)]/ Trexp(—SH), where 3 is the inverse temperature. Note
that the term n = 0 yields a §-function spectral line at zero energy transfer. This line
has its origin in the fact that the motion of the methyl protons is restricted to a finite
area. In principle, all other terms with n # 0 contribute to the scattering function.

The determination of $(Q,w) has been the subject of many experimental and
theoretical studies. In most of the proposed theories [14, 15, 18] the following
Hamiltonian is investigated:

H = Hy + Hp + Hyp (2a)
with
Hy=-Bd,+V(é)= ) E,X,rur (2)
v, I’
Hy = Ewk(b:bk +1/2) (2)
k

HRP = Z[gi COS(3¢) + gi Sln(3¢)](bk + b?:') = E 2 g}c‘vv’XVF:v'I"(bk + b-.i::-)'
k kT v
(24)

Here, B is the rotational constant and usually only the lowest-order terms of the
potential, V(¢) = V, cos(3¢), is retained in Hg. The coupling between the phonon
bath and the rotor is assumed to be linear in the phonon coordinates by and cannot
change the symmetry of the rotor. The operators X .. = [v[}(p'I7] are the
‘standard-basis’ operators introduced by Hewson [14]. In terms of these operators
the scattering function (1) reads

S(Quw) =Y £(Q) Y. X (prie™ T T le™™?|uT)
n={

v T gy, I
1 [ :
X ﬂ/ dte—Wt(XUF:V’F'(O)Xu'F‘:uF(i)) (3)
-0

where X ., r(f) = eiH‘X#,r,:#l?e“iH‘. (At low temperatures (T < Ey), where
mainly the librational ground state is occupied, the relevant time correlation functions



High-field spin-lattice relaxation of methyl groups 9157

are of the type (Xyr.op{0) Xypyr(1)). Furthermore, the ‘non-secular’ terms with
g # vand g’ # v/ turn out to be quite unimportant for S(Q,w). The physical
reason for this is that these terms describe the decay of correlations between distinct
quantum coherences.

Thus, the relevant spectral functions are

i 1 00 .
SEE @)= 5 [ 0t Xy (O Xy (D). @
— g

In most of the theoretical treatments of the temperature dependence of rotational
tunnelling, the spectral function S[I,‘ ;,F {(w) is tackled in second-order perturbation
theory with respect to Hgp. These calculations result in Lorentzian lines for Sl‘,: ’UF (w)
with different widths. For the inelastic (A «— E) tunnelling lines a temperature-
dependent renormalization of the transition frequency Ay, to be denoted as w,(T)
in the following, is found. We shall not repeat the resulting expressions here, but
only note the following. Hewson [14] and Héusler {15] found the broadenings of the
inelastic (A — E) tunnelling line and of the E* « E® line to be almost the same
(differences are mainly due to different values of gf, . and gf,..). Wirger [18]
found a reduction of the width of the E* «— E® line, in qualitative agreement with
experiment. The similar broadenings obtained by Hewson have their origin in the
fact that the lifetime-broadening processes in the initial and the final state are treated
independently and the resulting widths are added. This is allowed only for states with
different energies. If the states have the same energy, the width of the corresponding
line is reduced due to correlations between phonons resonating in the initial and the
final state. This is the physical reason for the reduced linewidth of the E* — E" line.
However, Wiirger finds a zero width for OI' s OI' lines, which means that here the
mentioned mechanism would exactly cancel the linewidth. Perhaps this point needs
further investigation.

1
Finally, we note that the spectral functions shh

v,

{w) might be written as

SPT (W) = (X, pur) Lo (w) (5)

L
W

where LE:E:(w) denotes a Lorentzian line (with real part z/[z? + (y — w)?]) of
width = centred at the renormalized transition frequency y, e.g. Re{S,‘:"g,E(w)] =

{(Xoaoa) ¥/ {7 + [w, (T} — w]?}, Re[Slde(w)] = (Xyeop) 7/ (7* + w?), where v
and 4 denote the widths. If we approximate the thermal expectation value {X . )
by its value in the absence of any coupling, Hyp = 0, we easily find

(X, ) = Tr{exp[- B(Hg + Hp)I X, 1}/ Tr{exp(~B(Hg + Hp)]}

= exp(-BE})/ Zg (6)
where Zg := Y, rexp(-BEL). This clearly demonstrates that the low-temperature
spectral function is determined mainly by SL[,: ;,r' (w).

3. High-field spinlattice relaxation of methyl groups

3.1. The equation of motion for the spin-density matrix

Before we turn to the specific problem of spin relaxation of methyl groups, we shall
outline the general theory of high-field nuclear spin relaxation [22, 23] in a way
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directly applicable to our situation. The Hamiltonian of a system of like spins in a
static magnetic ficld reads

H=H1+H]L+HL (7)

where H, = —v,ByI, = —w_1, represents the Zeeman interaction of the spins with
the static magnetic field B, aligned along the = axis, H is the Hamiltonian of the
isolated lattice (all non-spin degrees of freedom of the sample) and Hj; stands for
the spin-lattice interaction (dipolar or quadrupolar interaction). H,; is decomposed
into a static and a ‘fluctuating’ contnbutlon, the former of which supplements the
Zeeman Hamiltonian:

H=H;+ AHy + H) Hy=H_ + (Hy)y, AHy = Hy —(Hy), (8)

where (Hy; ), = Tr(p  Hy ), and p is the lattice-density matrix. This decomposition
ensures (AH; ) =0

Using a standard projection operator technique [26, 27], the following non-
Markovian equation of motion for the reduced density matrix & (¢) := Try [W(?)],
where W(t) is the total density matrix, of the spin system is obtained:

8,0(t) = —i[Hy, ()] _./u drK(r)e(t-7) 9

where [A, B] denotes the commutator and K(r) is the relaxation kernel to be
specified later. The approximations made in the derivation of (9) have been
exhaustively discussed in the literature, see e.g. [22, 23, 26, 27].

In the next step we expand the spin-density matrix into an orthonormal set of
operators O: -~

hi
o(t) = Y_(Ou(t))0; (10a)
k=1

where
{O(t)) = Try[Og o (2)]. (10b)

For typical spin systems the operators O, may be chosen as the irreducible tensor
operators T, ,, where [ is the rank and g the order of the quantum coherences [23].
This yields the equation of motion for the expectation values (O, (1));:

N

B (0u (N =~ (i'rn{ok[HI, 0.1+ [ ar Tr.{ok[mr)onl})wn(t—r)n.

n=1
(9a)

We now make the following approximations,

(i) We restrict ourselves to high static magnetic fields, where w, is much larger
than the energy shifts due to (Hy },. These are of the order of 50-200 kHz for
protons and deuterons, whereas typical Larmor frequencies are of the order of MHz.
Then the relaxation kernel K(7) can be calculated in second order regarding A Hyy .
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(ii) We assume the high-temperature approximation to be valid for the Zeeman
spin energy w,, i€. exp(—fw,) ~ 1 - Bw,. This is allowed for 7 > 1 mK
One implication of this hlgh—temperature ag‘proximation is that we have to replace
(O ()} by (O4(2)); — (O )%, where (O} );* denotes the thermal equilibrium value
of O,.

(iii) We restrict our attention to the relaxation of operators corresponding to zero-
quantum coherences (e.g. I.). Then all operators O, represent linear combinations
of projectors onto the single spin states. A coupling of the time evolution of
such operators to the time evolution of operators corresponding to multi-quantum
coherences (e.g. I, ) will be neglected in the following. This is allowed exactly, if the
initial spin-density matrix o(0) is diagonal (e.g. in an inversion recovery experiment).
Even if this is not true, the neglect of couplings is allowed for times that are long
compared to the decay time of the initial multi-quantum coherence. If e.g. o(0) ~ I,
this time is given by T, which is small compared to the timescale of the time evolution
of longitudinal operators, e.g. I,. Since in solids at low temperatures one has T} > T,
(1) ~ 15, T, ~ 100 us), this approximation provides no problem for our treatment.

With the definition

(BeqOi(B))1 = (04 () ~ (04 (11}
we have the following equation of motion for the expectation values of longitudinal
operators O (e.g. 1)

N t
(B g Ot = — qu d7 K 1 (T){AqOn(t — )i (12)
n=1
where the elements K  (+) of the relaxation kernel K( ) are given by

Ky () = Eoka[ 2 5(T)00.5 — Py o(1)0,.0]. (13)

Here, |a) and |3) are engenstates of the spin Hamiltonian H,, H,|la) = E_|a},
Oy, = (a|Oy|cx) and the transition probabilities P, 5() are given by

Py 5(7) = 2Re[(B|A Hyy (0)|er){ar| A Hy (7)| B exp(—iwpe )} (14)
for any Hermitian AHy; [28]. This transition probability is determined by the
time correlation function ((3|AHy (0){a){a|AHy (7)|8),, where time evolution
is with respect to H;, AHy (7) = exp(iHy7)A Hy exp(—iH 7), and the trivial
time evolution due to H; determines the oscillating function exp(—iwg, 7), Where
Wgo = E,Ie — EL.

The equation of motion (12} is solved formally be means of Laplace transforms,
if K(7) tepresents the matrix of the K (7) and A «q (1) denotes the ‘vector’ with
elements (A O (1)), k=1,...,N:

B0(s)=[s 4+ K(S)]'lﬁer(O)- (15)

It is evident that the equation of motion (15) yields a multi-exponential law
(BeqOQr(thy = 3, a; exp(b;1)(A,,0,(0)), for the time evolution of (A Ok(t))
only if K(s) = K(O) mdependent of the Laplace parameter s. This oondmon is
equivalent to setting the upper limit of the integral occurring in equation (12) to
infinity. We shall not do this here, since some of the transition probabilities relevant
for the relaxation of methyl groups show singularities for some frequencies, which
have to be handled with care.
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3.2. Application to methyl groups

It is our purpose to calculate the transition probabilities P, 4(r) for the specific
example of methyl groups. Here H, is given explicitly by equation (2), but we need
not make any assumption about the strength of the coupling between the methyl
rotors and the phonons nor about its specific form. We shall only need the fact
that the rotor-phonon coupling does not mix different symmetries in some of the
calculations. Our main aim is to show that the transition probabilities P, 5(7) are

related very closely to the spectral functions SEE,' (w) and to discuss these relations
in detail.

The spin-lattice interactions to be considered here are different for CH, and
CD;. In the case of CH,, it is well known that the dipolar interaction among the
protons is the only interaction that is of relevance. We shall first concentrate on the
intra-methyl dipolar interactions, but also consider intermolecular contributions later
and discuss their relevance for T;. For CD,, the main interaction is the interaction
of the quadrupolar moment of the deuterons with the electric field gradients (EFG) at
the site of the nuclei. These EFG originate from the electronic charge distribution of -
the chemical C-D bonds [29]. Furthermore, for CD; the EFG are axially symmetric
to an excellent approximation [30]; there is only one non-vanishing component of the
EFG. Of course, deuterons also are coupled via the dipolar interaction among the
deuterons. However, the strength of this interaction is smaller by a factor of 100-200
than the strength of the quadrupolar interaction. Thus, we can neglect the influence
of the dipolar interaction completely in the case of CD;.

In order to treat both cases, the relaxation of CH; and of CD,, in the same
formalism, we write for the spin-lattice interaction Hamiltonians Hy = HJf for CH,
and Hy, = HJ for CD, and denote the corresponding Hamiltonian by Hj}, where
A = D means dipolar interaction for CH,; and A = Q means quadrupolar interaction
for CD;. The coupling Hamiltonians might be written as

Hj = (Hjp)® (16)
o -

where the sum (k) means the sum over the three single-particle quadrupolar
Hamiltonians of the deuterons in the case of CD,, ie. &k = 1,2,3. In the case
of the dipolar interaction (A = D) among the protons of a CH, group, one has to
take the sum over the three possible pairs of protons, i.e. k = (1,2},(1,3),(2,3).
Tn appendix 1 explicit expressions for the (H{j} )*) are given and Hy} is written in
symmetry-adapted form. It is shown that the form is

2
Hy =d, Y Y (-)™R}_ (9505 8)T15n(A) (17)

' m=-2

where the summation over k in (16} is now replaced by a summation over I', cf (Al.5).
Here d,, R}, (©,;%; ¢) and T, (\) denote the coupling strengths, ‘space-part’
operators and ‘spin’ operators, respectively. I' denotes the irreducible representations
of C; (‘symmetry’); T, is conjugate to T, ie. T, = {A,E* E"} for T = {A,E® E*}.
©, is the angle between the principal axis of the coupling tensor (A = D: the
internuclear vector; A = Q: approximately the C-D bond axis) and the rotation

axis of the methyl group and ¢ is the methyl rotation angle. Q, = (f,; «,) defines
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the orientation of the static magnetic field B,, in a crystal-fixed frame, where the z
axis is chosen as the methyl rotation axis. This orientation is assumed to be fixed
throughout our discussion, since the methyl group is kept at its site. Thus, the
operators R}, (©,;Q; ¢), given by

R‘é\,m(ex;gu) = ”u(ex)Da,z,)n(Qu) (18a)
RE,(0,:0;8) = —v4(9,) D{) (2)€ + v5(0,) DY | (2y)e~H* (185)
R, (0502 ¢) = (-1)™[RE_,.(©,; 0% $)]" (18c)

are time dependent only due to their dependence on ¢. The fact that we keep £
fixed physically means that we exclude phonon modes that incline the rotor from
our treatment. Otherwise we have Qy(7) = exp(iH,T)Q,exp(~iHp7) # Q4(0),
see equation (2). The functions v, (©,) are given explicitly in appendix 1, (AL.6),
and the D,(f,)m(Qu) denote Wigner rotation matrix eiements. Noie that for CH,
v,(©p) = 0 and thus operators e'® do not contribute, whereas for CDj; all terms are
non-vanishing, which has some interesting implications for the angular dependence
of the spin-lattice relaxation time 7] in this case [31].

In order to calculate the transition probabilities we have to specify the spin states
of the methyl group. As already pointed out in the introduction, it is sufficient to
disregard odd permutations from our treatment. This means that we can build simple
product functions of rotational and spin states with the only requirement from the
Pauli principle that the product functions are of A symmetry. Otherwise we have to
construct antisymmetric states for CH, and totally symmetric states for CD;. We shall
denote the spin states for CH,; and CD; as {T'm} in the following, where m = mp is
the magnetic quantum number. The product states can then be written as

|[vT'm} := |v YT m) 19

in both cases. The only difference between CH, and CD, is the accessible values of
the magnetic quantum numbers m. We do not indicate this, to keep the formulation
more transparent. Furthermore, the Pauli principle 8 manifested in (19), which
implies that a strong statistical correlation between the spin and rotational states
must be kept in mind in the general formalism of section 3.1. This is quahtatwely
different from other spin systems.

For the decomposition of the spin-lattice Hamiltonians (8) we have to calculate
(Hii ), and thus (R (©,;Q4;¢));. Since RS, is independent of the rotation
angle ¢, we have

(RS (0,00 = RBE,.(©,:9) (20a)

and for the remaining terms the expectation values {e"?); are needed. Since e™?,
n # 3m, is purely off-diagonal with respect to the symmetry T in the basis {|vT)}
and

(XHF:U'I"’)L = 6I‘,I‘*<XVI‘:V‘F)L (21)

holds because H; is diagonal with respect to I', it is immediately evident that

(RE,. (03100 ¢)) = (RE,(0,; 24 ¢)) =0. (200)
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Therefore, we have
2

(Hi)=dy > (-1)™R}_ (0,;Q)TP.(N) (22a)

m=-—2

and correspondingly

2
AH =d5 Y Y (-D)"B} (950 é)Ti,()).  (22)
r=E* Et m=-2
This decomposition immediately leads to the conclusion that only symmetry-changing
transitions are relevant for the transition probabilities. This conclusion is independent
of the perturbational calculation of the transition probabilities and is due only to the
independence of the R{“m of the rotation angle ¢. It explains Haupt’s [32] finding
that symmetry-conserving transitions do not contribute to T, in CH; systems in second
order. It will be seen later that this does not hold rigorously if intermolecular dipolar
interactions are taken into account additionally.
For the static Hamiltonian (Hj} }, , which supplements the Zeeman Hamiltonian,

it is sufficient to retain only the so-called secular part (H;}'};, which commutes with
H, [23]:

(Hi ) = dyRE(O5: Q) TH(A). (23)

This operator does not mix spin states of different magnetic quantum number. Then,
the spin states |['m) are the ones given e.g. in [32] for CH,, where (HPI_')L does
not mix spin states of different spin quantum number I. This does not hold for
CD;. Here the secular static part of the quadrupolar Hamiltonian mixes spin states
of different spin quantum number I but the same magnetic quantum number m.
Thus, [ is not a good quantum number in the case of CD;. The cigenstates of H
are given as linear combinations of states with different I in appendix 2. Thus, we
have for both cases, CH; and CD,,

H{|I'm) = Ef,|I'm) (24)

where the deviations of EL, from EZ, = —mw, are small, of the order of
O(d, /w,) (= 10~2). Consequently, we find for the transition probabilities (14):

P rm(7) = 2Re{{(Tm|A H{} (0)|T'm/}(I'm’|AH{ (7)[Tm),
x expl—i( Ef,, — Efvri) 7]} (25)

and we are allowed to approximate EL_ — EL._, by (m’'—m)w,. For the calculation
of the time correlation functions occurring in (25), it is convenient to proceed similarly
to section 2, i.e. to write

AHR(T) =) > (wIm|AHR W T'm) X, by (THT ) Tem'|. (26)

vI'm v/'I"m’

Thus, (25) becomes

PRirm(T) =2Re (Z S (VTm|AH] |V T m/Wu'T'm’|A H [uT'm)

vt oupt

X (X, poy o (0) X ey (7)) €XPl—i{ m” — m)w,rl)- @7
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Again, the terms with v # u and o' # p’ are of minor relevance. Introducing the
spectral representation
o0

<XVI‘:v‘F'(O)X,,J[w:,,p(‘r))L = f

- 00

dw e S0 (w) (28)
we have for the Laplace transform of the tramsition probabilities

00
A -
Prim';rcm(‘s) = -[U dre =’‘r‘IJI?‘Z:':1‘;1"¢3':'L(‘r)

o Sr.r"(w)
_ A0 12 ny
=2Re (;ermlAHn_lV I"m')| ./;oo dw s —ifw - (m' —mw,] |~

29

Thus, the transition probabilities are determined by the Hilbert-Stieltjes transform
[23] of the spectral function ST (w), which also determines the incoherent

dynamical structure factor S(Q,wv)' in INs experiments. This is also evident directly
from equation (18), which shows that the relevant time correlation functions are of
the type {e"*Ve—m#(7)y, n m = 1,2, which are similar to the lowest-order terms
in the expansion (1). Therefore, INS and high-field NMR relaxation experiments are

determined by exactly the same time correlation functions and we can write
Pl'%:m';l",m(s) e S(Q < T'_l,s + i(m' - m)""’z)'
It is easily seen by considering the uncoupled case,

Sy (w) = exp(~BE})8(ES — EJ, —w}/Zy
that the most dominant terms in (29) are those with v = /. In the case of dissipation
the &-function has to be replaced by the appropriate Lorentzian, cf (5). However,
ET — ET, > w, for v # v/ in almost all situations of physical interest. Furthermore,
the matrix elements of A Hj} between states of different librational quantum numbers
are smaller than those between states of the same librational quantum number for
not too small potentials and states with energies well below the barrier height V;.
At low temperatures, where the librational ground state is predominantly occupied
thermally, the transition probabilities are given by the v = v’/ = 0 terms of (29). If

we assume the form (5) for Sy (w), we explicitly have in this casc

Pé\'m’;Am(s) = 21<0AmIAHl)i.l(]Ebml)lz(leA:UA)L

x (v + ) H{(v+ )+ [w(T) — (m' = m)w,]*} (30a)
P mrpm(8) = 2[{(0E*m| A Hij [0E°m'}*{ X yp.op )1
x (54 )/H{GF + )+ [(m' — m)w,]?). (306)

Here v and % denote the broadenings and w,(7’) is the temperature-dependent
renormalized ground-state splitting A, The transition probabilities PJ, e, (s)

are zero in the case of CH,. It is easy to sce from (30) that P, ., (s) can be
replaced by Pli‘;m,;[“m(O) if 4,4 > s. This is the condition to set the upper limit
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of the integral in the equation of motion, equation (9), to infinity. However, this
is not allowed if v and % are of the order of the inverse measuring time s. It is
shown explicitly in appendix 3 that even in this case the substitution of PR\, ..r m(s)

by P2 ir.m(0) induces an error that is formally of the order O((d, /w,)*). This is
negligible in second order. Furthermore, the same substitution is shown to be allowed
also in the area of resonances w,(7T") = (m' — m)w,. These results are in accord
with the more general ones of (23, 33].

Even though we will concentrate ourselves on the discussion of the relations
between the spin-lattice relaxation time 7 and S(Q,w), which means we choose
only the specific operator O, = I, the following remark concerning the operators
O, seems to be appropriate. There are different ways to choose these operators.
One way is to start with an expansion of the spin-density matrix into irreducible
tensor operators T,,m, where [ = 0,1,...,21. Then { = 0,1,2,3 for a dipolar
coupled three-spin-1/2 system (T, Zeeman energy; T,,: dipolar energy; Tj:
octupolar energy, three-spin order [34]). For deuterons, there are only the Zeeman
energy 7,, and the quadrupolar energy 754 In the next step the number of
relevant operators can be reduced for some physical situations; e.g. for protons
often the spin temperature concept is valid, which implies (7;,); = 0. The most
important operators are always such operators that are constants of motion with
respect to H; + H; and change in time only due to AHy. Such operators
are also called quasi-constants of motion [35]. In the case of methyl groups the
symmetry species concéntrations are additional quasi-constants of the motion as
compared to other typical spin systems. These might be represented by operators
of the form Op = [Tri(O)]"Y2 %, II'm){I'm|, to be compared to e.g. I, =
[Tr(I)]~Y2 3., m|{'m}{T'm|. For CHj, the choice of the operators O, has
been discussed for a variety of physical situations [36]). Whatever the specific choice
of the O, might be, it turns out that the relaxation of the Zeeman energy is
coupled to the relaxation of other quasi-constants of motion at low temperatures,
ie. K, #0, k # z. However, it is always possible to extract the autorelaxation rate
of the Zeeman energy, K, , = Tl‘l, from inversion recovery or similar spin-lattice
relaxation experiments [37].

Noting that {['n|I,|I'm) = mw,, one finds the Hebel-Slichter equation [38):

TN = %Z Z W o m (0 — m)zwi/Z(E;m)z (31)
I'm

'm I"m/'

where we have defined
Wiyt m = WM Priyrir m(5) (32)

and the Pp, .1 . (s) are given by (29). Thus Ty(A) is a measure of 5(Q < r~',w)
at some mﬁltiples of the Larmor precession frequency w, and the information from
both quantities is directly comparable. What has been called ‘correlation time’ in
much of the NMR literature is identical to the line broadening. Introducing the
imaginary part of the Hilbert transform

a F o SF,F:
S;I:_'El(nwz) = wRe (1/ de(w)_) )

e W — MW,
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we find for the transition probabilities

le‘im,;p‘m = 22 |(ul"m|AHﬁ‘|u'F'm')|ZS£"E:((m' -~ mw,). (33b)

vt

This relates the relevant spectral function (4) of neutron scattering with the transition
probabilities causing spin-lattice relaxation, one of the main results of this paper.
The squared matrix elements of the interaction Hamiltonian AHj} are given by

|(vTm|A B VT m) 2

(V)|rem}?

m—-m'

= & (VTR (0, R @)V TYPIT mITy

, T

(39

where T is determined by the pair (I',TV).

T) experiments are frequently performed on powder samples. In this case it is
often allowed to perform an average over Tl"' rather than over the law governing the
time evolution of the magnetization, e.g. exp(—1/7)) [31], where averaging is with
respect to the orientations of the methyl groups in the sample (i.e. integration over
the unit sphere Q). Utilizing the orthogonality of the Wigner rotation matrices [39]
one easily finds

“ 2
(Dgz,mz (QU) D-En?,mi(QU»powder = %6m1,m; 6mz,m;_ (35a)

where

2x r
(f(Qu))powder = (%"’)/ﬂ daufo sin 8y d g, f(2y)-
This immediately yields

(I TIRE . (© 3 3 S) ' T} pocer
= Ho(©, I TIe? |/ T) [ 4 v2(©,)?|(vT e~ ¥ L' T"} ) (35b)

which is independent of » (recall that in the case of CH; v,(©,} = 0, cf appendix 1).
The tramsition probabilities (33) can be used to calculate the relaxation matrix
occurring in equation (15).

We now turn to the specific cases of CH; and CD; relaxation. The matrix
elements needed in the following have been given earlier in several publications. The
matrix elements of the dipolar Hamiltonian can be found in [32] and the ones of the
quadrupolar Hamiltonian in the case of CDj; are given in [31].

3.3. Quadrupolar relaxation of CD; groups

For the calculation of T,(Q} = T;(CD;) we use the spin matrix elements given in
[31]. Note that for the calculation of T; it is irrelevant which basis for the spin states
is chosen, since T, reflects the relaxation of the Zeeman energy (I,};. This does not
hold if we wanted to calculate, for example, the autorelaxation rate of the quadrupolar
energy, Tlal. The spin matrix elements are to be combined with the corresponding

elements of the type (uI‘|R{";n(@Q; Q@) T). When the squared matrix elements
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of AHY are inserted into equation (33) for the transition probabilities, we eventually
find

T,(CDy) ! = T{(CDy; A & E)~! + T (CD;;E = A)"! 4+ T{(CD,;E ~ E)~!  (36)

where

T,(CDj; A —» E)' = £d} ) Z [[{vE*|RE,, (©g; Qs &)/ A}

vy’ m=-2

+ (B RE_, (©g; p; 8) | AYPFIm2 30 (mw, ) (37a)

Ty(CD;E ~E)™' = ydg ) Z (VB | RS (O3 3 &)1 E* M
v m=-2

+ (VEY RS, (©g; Qs &)WE*) FIm?SEE (mw, ) (37b)

v, vt

and T;(CD;E — A)~! is obtained from 73(CDy;A — E)-1if $8A(mw,) is

vyt

replaced by S'f"ﬁ(mwz) in (37a). To obtain (37) in this form we made use of
equation (18c) and the fact that the E states are complex conjugate to each other.

The temperature dependence of T,(CD;) has been discussed in [31] and we will
not repeat this here. Instead, we restrict ourselves to low temperatures (v = ' =0
in (37)) and to systems for which the tunnelling frequency w,(7') is much larger
than the Larmor precession frequency w,. In this situation only T,(CD;; E < E)
contributes to the spin-lattice relaxation and T;(CD;) is a direct measure of the
linewidth of the quasi-elastic E* « EP line in INS experiments. If 7} experiments
are performed using different Larmor frequencies, the lineshape can be analysed in
addition to the linewidth, which is not easy in INS owing to elastic intensity in the
energy range of interest.

To illustrate this point, let us assume that we are allowed to perform the powder
average (T1(CD;) 1) pouger Using (35b) we then have

2
(T1(CD5 A = E) M pguaer = Cax Y, m g (mw,) (38a)
m=-—2
2 -
(TI(CDJ;E A E)—])powder = CEE Z mzsll)a:‘[]E(mwz (38b)
m==2

where (cf appendix 1 and equation (18))
Cpp = & d5[01(©Q) (O |e 01"} 2 + u,(@) (0T e[0T} ). (38¢)

For w(T) » w, it is clear that S'fu"‘(mw ) ~ 0 and that (73(CD3)™ ") ouqer 18
determined by the spectral functions SEUE(mwz) Thus, a 7] experiment can be
viewed as a fixed window measurement in INS [1]. If we furthermore assume that
SE E(mw ) is given by the Lorentzian {Xyg 5, 7/ (5% + m2w?l), cf (5) and (33), we
have on the low-temperature side of the T} minimum

(TI(CDB)_1>pmder = C’?/wi (39)



High-field spin-lattice relaxation of methyl groups 9167

since here ¥ € w,. The constant C is given by C = 4Cgp{Xpe)L. Equation (39)
allows one to analyse the shape of 52;F(w) if the Larmor frequency w, is varied in
the experiment. The absolute values of 5 and its temperature dependence can be
compared to those obtained from INs data. Thus, a combination of deuteron spin-
lattice relaxation experiments and INS experiments performed at different Q values
might yield more detailed information about the E* — EP line and the I' «— I lines
than either experimental method alone.

3.4. Dipolar relaxation of CH, groups

In the case of CH, the dipolar Hamiltonian has only matrix elements between A
and E states. Matrix elements between E* and EP states are forbidden by spin
selection rules, since E states have spin / = 1/2 and the dipolar Hamiitonian only
contains spin operators of second rank. An arbitrary spin matrix element can be
written as (E°m|TE, _ . (D)E*m’) = C(1/2,2,1/2; m’, m = m)(E®||T£ (D)||E*)
where C(1/2,2,1/2; m', m — m’) is a Clebsch—Gordan coefficient in nomenclaturc
of Rose [39] and (E®||TF' (D)||E*) denotes a reduced matrix element. All these
matrix elements vanish identically, since C(1/2,2,1/2;m,n) = 0. Consequently, it
is evident immediately that the spin-lattice relaxation of an isolated CH, group is
determined only by A — E transitions, as is well known [32]. Thus, we have from
(33) and (31)

Ty(CH;)"! = Ty(CH; A < E)™' + T)(CH; E - A) ™! (40)

with

2
T{(CHzA —~E)™' = £d} Y~ Y [(VE'|BE . (Op; Qs $) A
ve! m=-2
+ |(VE* IR (©p; Qs @)V A PIm? 5,0 (e, ) (41)

and T}(CH;E — A)~! is obtained from (39) in the same way as in the CD; case.

Thus, the spin-lattice relaxation rate of an isolated CH, group is a direct measure
of the width of the inclastic (A — E) tunnelling lines. This means that a temperature-
and frequency-dependent study of T, of isolated CH; groups will yield information
about the broadening of the A « E lines even in the temperature range where the
inelastic lines merge into the quasi-elastic lines in an INS experiment, i.e. in the so-
called ‘quasi-classical’ regime. To be more specific, let us consider (1"1(CH3)'1)1,owder
in the same way as in the CD; case, which is e¢asily obtained from (40) and (41) using
(35b). Thus, we find

(TI(CH3)-]>|)OWdel’ = Z ngEbA(mwz)

which intrinsically relates T 10 S(Q « »~!,w). Here we have at low temperatures
and for Lorentzian-shaped inclastic A — E tunnelling lines

(T3 CH3) ™Y pouter & 3 m* %/ (1* + 1w (T) — mw,]?)

which also can allow an analysis of the lineshape in some cases, namely for not
too large tunnelling frequencies. In the ‘quasi-classical’ regime, w,(T) has decayed
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to zero and (Tj(CH;)~1)pouger ¥i€lds the width of the A — E line. In an INs
experiment it is not easy to obtain this information, since there the quasi-elastic peak
is a superposition of A — E, E* — E® and elastic scattering, including symmetry-
conserving scattering. On the high-temperature side of the T, minimum, v > w,
holds and (7,(CH;)™") powae, is directly proportional to y~'. Consequently, 7,
experiments on isolated CH; groups in combination with INS experiments would
be of particular interest to get more detailed information about $(Q € r~1,w) also
at elevated temperatures. (More specific formulae will be given later in connection
with the calculation of the intermolecular contributions to 7).)

Additionally, the same A « E transitions, which determine the spin-lattice
relaxation rate (40), are also responsible for the symmetry conversion rate (spin
conversion rate) 771 [8], even though 7 represents the relaxation of the Zeeman
spin energy and r_! is the relaxation rate of the symmetry species concentration. In
fact, both quantities are expected to be of comparable magnitude at low temperatures
(T € Ey,) for systems with large A, [32]. This, however, is not found experimentally
[40). There is widespread belief that the intermolecular dipolar interactions between
the methyl protons and surrounding protons are responsible for the much smaller
values of T,. Usually, the intermolecular contribution to 7; is handled in a
phenomenological way as was done e.g. by Haupt [32]. The only more systematic
treatments of intramolecular dipolar interactions known to the author Lave been
given by Clough [41] and Zweers and Brom [42]. Clough treated the problem of
spin-lattice relaxation using time-dependent perturbation theory. Even though he did
not give explicit expressions for the dependence of the intermolecular contributions
to 7; upon the proton—proton distances and the relative orientations, he showed that
E* — EP transitions, which are much more effective than A — E transitions for large
tunnelling frequencies, additionally contribute to T;.

In order to render the discussion concerning the influence of intermolecular
contributions to spin-lattice relaxation of CH; groups more quantitative, we now
turn to calculation of the spin-lattice relaxation rates due to dipolar interactions
between the methyl protons and surrounding protons. For this purpose we write the
dipolar Hamiltonian for a proton i and the protons of the CH; group similarly to
appendix 1 as

2
HR () =23 Y (-O)™R} _ . (8)T5.(3) (424)
' m=-2

where (cf (Al.4), [22, 29])

2
B, (5) =/ (-83"—) S D2 (9)
n=—-2

x (Vg o (wi)/(Ry)* + E7FYy o (win) [(R;p)* 4 €F E,n(wes)/(R53)3)
(42b)

and

THy(i) = VBUO I - AP IE + 191%))
T30 () = FUOL + 101D) Tf (i) = HP I (42c)
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Here I{ acts on the spin states of the proton ¢ and I = (1/v3) (I +£ 1P 4
eI, £ = exp(i2m/3), k = 0,1,-1 for T = A,E*, E, respectively, acts on the
spin states of the methyl group. In (42b) w,, and R denote the orientation of
proton ¢ relative to methyl proton v and their distance apart. The form of (42) is in
accord with the one given by Clough [41]. To proceed we perform a series expansion
of the distance dependence of the operators R} _ (i; ¢) in powers of (r/ R;), where
R; is the distance of proton i from the centre of the group. This expansion is
achleved by using the gradient formula of Rose [39] in the form given by Nijman and
Berlinsky [7]:

YL,n(wiu) — L + 1
(Tu'v)w——(ZL'I'U (2L+3)
sz(l L, L+ 1y m,n)(rm)s Tettnsm (“is) (43)

(R, )i+?

where r* is the wmth spherical component of =,; in our case r! = 0, r¥l =
F(1/V2)rexp(£id, ), ¢, := &, ¢, := ¢+ 27/3, ¢, := ¢—2x/3 in the rigid rotor
approximation. The derivative has to be taken at w; = (9,,®,) and R;, where w;
denotes the orientation of the proton with respect to the centre of the CH; group in
a crystal-fixed frame. In the following we keep the protons ¢ fixed at their equilibrium
coordinates (w;, ;). This means that we neglect the dependence of (w;, R;) on the
phonons and thus on time. This is a reasonable assumption for protons located on the
same molecule to which the methyl group is attached. Otherwise there is no physical
justification for this approximation, since it is the neighbours of a methyl group that
are also responsible for the rotational dynamics. However, a careful treatment of this
point is beyond the scope of the present paper. With the definition

= R @

the Hamiltonian for the intermolecular dipolar interaction can be written as

HH_(a)-d’ZZ( D™ Ry _ (35 6)T5 5, (3) 45)

' mo-2

where the operators R,f = (% ¢) represent series expansions in powers of (r/R;)
of the form R}, (i5¢) = ¥, R} .(i;¢)®), where RS (i;¢)F) is of order
O((r/R;}*). The expressions for the terms R] (i;6)%) up w0 k = 3 are given
explicitly in appendix 4. Here we only note the following fact. The operators
RE_ (i,¢)® are of the type ¢, ¢~%¢. In contrast to intra-methyl interactions, in
O((r/R;)*) one finds that RS (4 ¢)® is a function f(€%¢), which is an operator
acting on the rotational states. Thus, in this order also correlation functions of
the type (e%¢(Ne-34(*)}, contribute to the transition probabilities and thus to spin—
lattice relaxation. These types of time correlation functions are similar to higher-order
terms in the expansion (1) of S(Q, w) and consequently the correspondence between
77! and S(Q <« r~',w) is violated if these terms are considered additionally.
Furthermore, it is evident that the static part of HY (¢), (HE (i));, now contains
terms (e3‘¢)L, which are diagonal in the basis {|vT}}. Thus, (H{ (i)}, is temperature
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dependent in this case, which could be studied by recording the high-ficld NMR
spectra of systems containing methyl groups closely surrounded by other protons as
a function of temperature. However, it is not our present purpose to quantify this
effect. Instead, we turn to the calculation of the intermolecular contribution to T,
due to (45) in O((r/R;)*), where symmetry-conserving transitions do not contribute.
The calculation is very similar to the one performed before; only the spin states are
to be modified. With the definition

|CM) = |Tm)|m,) (46)

where |[['m) are the spin states of the CH, group and |m,) those of the proton i,
M = m + m, we have for the transition probabilities in close relation to (33):

WE i m(8) =2 > (W MIAHE (i)|v'T' M) ST (M - M)w,). 47

v,p!
v, v

Here only E-symmetric operators contribute to AHF (i) in O((r/R,)?), cf (22) and
(A4.4), and the states |vT" M) are given by |} T M). Following Clough [41], we
write for the spin-lattice rclaxation rate

Ty(CHg; total) ™! = Ty(CHy) ™! + Y Ty (CHy; i) ™! (48)

where T;{CH;)"! is given by (40) and (41) and T;(CHj;¢)"! is given by a Hebel-
Slichter formula analogous to (31) but with the transition probabilities (47). Without
giving the explicit evaluation of the spin matrix elements here, we quote that the
results can be written as

T{(CH,; i)' = T;(CHj; 43 A > E) "'+ 73(CH33 5, E = A) 14+ T (CH;; 4 E = E) ™!

(49
where
Ty(CH,; 4;A « E) ! = é(d;’;)zz izll(vE*lﬂi'm(i; )|/ AN
+ (VB RE_, (5 9) |/ A F]m2SEf (mw,) (50a)
Ty(CHy GE —~ E)™' = é(di’))zz i;!{l(vE"qu,‘m(i;¢)|u'E‘>12
+ (BN BE, (5 $) [V E PIm? 5L (mw,) (500)

and T;(CHj; ;; E — A)~! is obtained from T,(CHy; i; A — E)™' in the same manner
as before.

Thus, the intermolecular dipolar interactions modify the A « E relaxation rates
and they lead to E* — EP relaxation rates. Using our formulae these contributions can
be calculated in any desired order of r/ R;. It is evident immediately from (40), (48)
and (49) that for systems with large tunnelling frequencies T is mainly determined by
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intermolecular dipolar interactions, as 7;(CH;; A — E)~! and T)(CHy; 4 A — E)~!
are negligibly small in such situations.

In many proton spm—lattwe relaxation experiments it is allowed to perform a
powder average of 77!, (T} 1)1,0wcler Up to O((r/R;)*) one finds from (35¢) and
(Ad.4)

(T(CH3; ;A E)hl)powder

2
= (dp)(r/R;)*Y_ A, (wiir/R) Y m28Th(mw,) (51a)
ve! m=-2
(T1(CHy; 5 E = B) ™) ger
2
= (db)(r/ R B,,(wir/Ry) 3 miSpE(muw,) (518)
vt m=-2
with
Ur & .
vv’(wnr/R ) - _1"-'7'3 R IIXIE(H)Y;,n-](wiHUEa‘elélV’A)
+ (r/ B) XF(n)Y, pya(w)(vE e 2P| A) (52a)

where Y, ,,.(w) are spherical harmonics and the X E(n) are the expansion coefficients
given in (A4 5). For B, ,.(w;; v/ R;) one has the same expression but with the rotor
matrix clements (uE‘|e‘¢|u’A) and (vE2le~%¢ |/ A) replaced by (vE"|e*|/E*) and
(vEble~2%[/E*), respectively. If the rotor matrix elements are chosen to be real,
one eventually finds a surprisingly simple expression:

Ay i(wisr/ R;) = %[2(2 — cos? ©;)(VE? e v'A)?
+ 5(r/ R;)sin® ©, cos(3®, ) {vE?|e!® ' A} (vE2je 54|/ A)
+ 5(r/R;)}(90cos® ©, — 420¢c0s” ©; + 346){vEle" ¢ [L/'A)?] (52b)

and a similar one for B,,,.(w;;r/R;).
Proton spin-lattice relaxation experiments are frequently analysed using the
formula 17, 19-21]

2

(T Yoot = C1 X T oy 3 e * © Z Tt (mw T+ (moyirt &

m=-12

where C), C,, T and w,(T) are usually fitted parameters and C, is of the order of
5C; t0 1000C,. Using (33b) and (5) with (Xyrgr)p = 1/3 (high potential barriers)
in addition to the expressions derived above, we find

C) ~ Zd%(0E*[e~2¢|0A)? + 3Z(qu) (r/R)Ag(w; 7/ R;) (S4a)

1t

%Z(d Y(r/ R By(w; 7/ R;) (54b)
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ify=9=7"!and v = +' = 0 are chosen.

The connection to the case of an isolated CH, group is made by simply setting
(r/R;} = 0 in the above expressions. Thenr only the first term of C survives and
C,=0.

To give an illustrative example, we consider the following experiment performed
by Miiller-Warmuth ef a/ [16]. These authors studied the spin-lattice relaxation of
toluene and toluene-ds (only the methyl group protonated) diluted in perdeuterated
toluene-dg and found an increasing spin-lattice relaxation time with increasing
dilution, demonstrating the importance of intermolecular dipolar interactions. If
we use as a simple model a CH; group surrounded by a sphere of protons, we have
[2(0E*|e'?|0A)? + f5(r/ RY*(0E*|e~%¢|0A)*]p for A, instead of the sum over the
different protons in (54), where R is the radius of the sphere and p denotes the
number of protons. We only consider toluene-ds diluted in toluene-dg. Since there
are eight molecules per unit cell in a-toluene [43], we use p = 24 in this case and
multiply Ay, by 0.1 and 0.25 in the cases of 10% and 25% toluene-dg, respectively.
Estimating the rotor matrix elements in a harmonic oscillator approximation [44]
yields {OE?|e'?|0A)} ~ (OE®|ei®|0E?) ~ 0.97 and (0E?|e~Z?|0A) ~ (OE®|e~2%|0E*) ~
0.87. Using these values and (r/ R) = 0.51 we have for 10% toluene-d; in toluene-dg
C,/Cy = 7x1073 and for 25% toluene-ds C,/C| = 1.6x 1072, t0 be compared to the
experimentally found ratios C,(exp)/C(exp) which equal 6.6 x 10~3 and 1.6 x 1072,
respectively. Thus, even this quite unrealistic model for the intermolecular dipolar
interactions yields reliable results. If we evaluate the spin-lattice relaxation times
at T = 12 K with the parameters given by the authors, we find for pure toluene
T,(12 K) = 2.3 s to be compared to the value 7™4(12 K) ~ 30 h for C, = 0. This
latter value is easily seen to be of the order of magnitude of typical spin conversion
times [8]. Additionally, we note that our simplified model yields an intermolecular
contribution to the constant C) of less than 3%, which also is in accord with the
experimental finding that C,(exp) remains unaltered for all systems studied by the
authors. This fact shows that the modification of the relaxation efficiency of A — E
transitions due to intermolecular dipolar interactions is rather small. We expect that
the same holds for intermolecular contributions to the spin conversion rate, which we
consider as an indication of the validity of the model used in [8], namely to consider
only intra-methyl dipolar interactions.

4, Discussion

We have applied the modern theory of high-field nuclear spin-lattice relaxation to
the specific problem of rotating methyl groups in solids. This way we showed that
symmetry-conserving transitions do not contribute to spin relaxation of single methyl
groups in accord with Haupt’s [32] finding. The static spin Hamiltonian in our
treatment corresponds to the so-called ‘time-averaged’ spin-lattice Hamiltonian in
semiclassical spin relaxation theory.

Our formulation of the problem is chosen in such a way as 0 show that the
transition probabilities relevant for spin relaxation are determined by exactly the same
spectral functions as is the incoherent dynamica] structure factor S(Q < 1 w).
Since this is true for all elements of the relaxation kernel (13), not only the relaxation
rate of the Zeeman energy, 77 ', but also all other spin relaxation rates (e.g. the
relaxation of the quadrupolar energy in the CD; case, Ty, } are related intrinsically
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to S(Q < r~1,w). In all cases the spin relaxation rates are linear functions of the
spectral functions S1'T, (w) at some definite multiples of the Larmor frequency w,.

v, vt
Owing to the different spins of CH, and CD,, the spin-lattice relaxation time is a
measure of different transition lines in an INS experiment.

In the case of CDj; it would be interesting to perform INS and NMR experiments
on systems with large tunnelling frequencies in order to obtain detailed information
about the shape and the width of the E* ~— EP line and also about the lines that
do not involve symmetry-changing transitions. In addition to the already quoted
possibility of an analysis of the lineshape, a comparison of the linewidths 4y, and
Yins can be used for testing Wiirger’s [18] result that symmetry-conserving transitions
do not lead to a line broadening. If this holds, 7yyg should equal ¥;ys. In the
case of a finite broadening of the O — OT lines, the quasi-elastic widths extracted
from deuteron 7, experiments are expected to be smaller than those obtained from
IN5S experiments at higher momentum transfer (Q > r), since symmetry-conserving
transitions do not contribute to deuteron 1) at all.

Decuteron T; experiments can also be helpful in a more detailed analysis of the
isotope effect in systems of coupled methy! groups, such as (CH;),SnCl, [45] or
lithium acetate [46]. In the case of coupled pairs of methyl groups, the spectral
function contains a transition line at very low frequency due to a splitting of the
E’E* and E’E states in these systems [47], which is not easily resolved by means
of INs. A study of the frequency dependence of deuteron 7, at low temperatures
can provide this information if the mentioned splitting does not exceed the range of
accessible Larmor frequencies.

The reason for the direct comparability of deuteron NMR and INS experiments lies
in the fact that the dominant interaction in the case of deuterons is the quadrupolar
interaction, This is a single-particle interaction from an NMR point of view and thus
allows the observations of single methyl rotors as in incoherent neutron scattering.
This also means that deuteron T, experiments are able to distinguish inequivalent
methyl groups in a crystal, as has recently been demonstrated for o-crystalline toluene
(48]

In CH,, the situation is quite different. The dipolar interaction is a many-particle
interaction. Thus, dilute systems are to be considered in order to render NMR
experiments directly comparable to INS experiments. In this case, 7} is a measure
of the shape and the width of the A « E lines in the whole temperature range
of experimental interest. Therefore, a combination of INs and NMR experiments
on diluted CH, systems would yield information about the structure factor S{Q <
7~} w) also in the temperature range where the lines in an INS experiment have
merged into a single quasi-clastic feature. Once the width of the A — E lines is
obtained from proton NMR, this can be used as input for the determination of the
E? « E' linewidth from INS experiments as proposed by Wiirger [49]. Such an
analysis of data has not been done until now to the author’s knowledge and would
be desirable for a deeper understanding of the broadening mechanisms in the *high’-
temperature range.

Furthermore, the importance of dipolar interactions between methyl protons and
surrounding protons has been pointed out and we gave explicit expressions for these
contributions to Ty in O((r/R;)*). These might be helpful for more quantitative
interpretations of proton NMR T data than has been possible up to now. Using our
equations (51) and (52), the intermolecular dipolar interactions can be determined
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up to fourth order in (r/R,), if the proton-proton distances of the compound
under study are known. The validity of the truncation of the series expansion used
in our calculation could be checked by careful measurements of the temperature
dependence of high-field NMR spectra, since temperature effects on these are expected
in O((r/R,)%). From (53) and (54) it is evident that the intermolecular contribution
to A « E transitions is generally small. Thus, for systems with large tunnelling
frequencies the spin-lattice relaxation time is mainly determined by intermolecular
dipolar interactions, whereas the spin conversion time is a measure of the intra-methyl
dipolar interactions.

When pure CH, systems are considered, the relation between T, and S(Q <«
r~1,w) is violated. From our treatment of the intermolecular dipolar interactions,
one could conclude that in this case the situation for systems with large tunnelling
frequencies would be comparable to the CD; case, the difference being mainly in
the different ranges of Q values. Note, however, that we did not allow for a
direct coupling of the intermolecular dipolar interactions to the phonons. Here,
a combination of INS and NMR experiments might be able to test the validity of this
approximation.

In conclusion, we have shown that specific combinations of INS and high-field
NMR relaxation experiments can yield more detailed information about the motional
spectrum of methyl groups than either experimental method alone. Such experiments
could resolve some of the problems of each of the methods and allow more direct
comparison to theoretical approaches to the problem than has been possible up to
now.
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Appendix 1. The spin-lattice coupling Hamiltonians H}}

In the principal-axis-fixed frame ‘P’, the quadrupolar interaction of a deuteron
u = 1,2,3 with an axially symmetric electric field gradient (EFG) can be written
as

[HE ()] = dg[3({)* — (1)) (Al.1)
where
dg = elqQ/4.

Here, eq denotes the non-vanishing component of the EFG [29, 30] and Q the
quadrupolar moment of the deuteron.
The dipolar interaction between two protons u and v reads as

[HP (P) ) = dp[210018) — 11491 4 189 10)] (Al2)

-3
dD = __.«“21-:(1“1)
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where v; is the gyromagnetic ratio and T(uwv) the separation of the protons and
represents the z axis of the principal-axis-fixed frame. The operators 75*) are spin
operators acting on the spin states of particle .

In an arbitrary frame of reference the Hamiltonians (Al1.1)} and (Al.2) read in
irreducible tensor operator notation [29]

2
(HD® =dy 3 (-D"RE (@) (0 (A13)

m=a2

where A = D means dipolar interaction between two protons and A = Q means
quadrupolar interaction in the case of deuterons. In the first case k stands for the
pairs of protons considered (¢.g. the pair u and v) and in the latter k stands for the

deuteron under study. Transforming the (krll(ﬂ(;‘)) successively into a crystal-fixed
frame ‘C’, where the z axis coincides with the methyl rotation axis, and then into
the laboratory-fixed frame ‘L, where the z axis is determined by the direction of the
external magnetic field, yields:

2
RE) @) =v6 3= D (P[P DD (2,) (A1.4)

n==2

where Q&“[PC] ={0,0,, 1r-—<I)&k)) defines the orientation of the ‘P’ system in the ‘C’
system and 2, = («,, 3,,0) defines the orientation of the ‘L system in the ‘C’ system.
Note that ©, is independent of the particles considered, since the methyl rotation axis
is the z axis of the ‘C’ system. For CD;, O, is given approximately by the tetrahedral
angle Ot (cos @1 = 1/3); and for CH,, @ = = /2. In the rigid rotor approximation
[1, 15] we can write for the azimuthal angles d)f\k): <I>g) = ¢, <I>E\") = ¢+ 2m/3,
o™ = ¢ — 2x/3, where ¢ = 1(¢, + &, + ;) and for A = Q (L1510 = (1,2,3)
(deuterons) and for A = D (L II,1II) = ((1,2),(2,3),(3,1)) (pairs of protons).
Symmetry adaptation of the Hamiltonian is achieved by defining (cf (17))

R} (059 ¢) = B),(20) + 7RI (") + £*RID(Q™). (A15)

Here, « = 0,1,~1 for ' = A,E*,E®. This way the R} .(©,;Q; ¢) given in (18)
are obtained, where

v (0,) = (3/V2)(3c0s O, — 1)
1,(0,) = (3V3/2)sin(20,) v,(9,) = (3V3/2)sin’ @,. (ALS6)

For CH;, one has (O = n/2) : vy(7/2) = —(3/V2),v(7/2) = 0,v,(w[2) =
3v/3/2. If we approximate ©g by ©r, we have for CD;: v,(04) = ~v2,v,(0) =
V(8/3),v,(©1) = 4/+/3. Note that in the case of CH; operators of the type ¢l
do not contribute, since v {7 /2) = 0. The symmetry-adapted spin operators are of
similar type as given in (Al.5). Explicit expressions for these operators may be found
in [29, 32, 38].
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Appendix 2. Eigenstates of H, for CD,
In the high-field approximation H; can be written as
Hy = -w, 1, + v(09) D5 () TH(Q) (A2.1)

which is a pure spin operator. Diagonalization of the matrix (A2.1) yields the

following eigenstates |[', quadrupolar energy, m} starting from the cigenstates of
I, |, I, m), given in {31):

1A, —q,+3) = |A,3,+£3) IA,0,+2) = [A, 3, +2)
A, —a, £1) = (1/V5)(2IA, 1, 21) + A, 3, 1)

|A,2q,0) = (1/V5)(V2]A,3,0) — V3]|A,1,0))
1A, 0,,0) = (1/V5)(V3]A,3,0) + V2]A,1,0)) 1A, 002, 0) = [A,0,0)

and
{E*,0,42) = |E?®,2,%2)
B2, q,+1) = (1/V2)(|E*, 1, £1) F |[E*, 2, 1))
|E®, —q,£1) = (1/V2)(E*, 1, £1) + |E*, 2, 1)) (A2.3)
|E",0“),0) = |[E*, 1,0)
|E‘,O(2),0) = |E*,2,0)
|E®, quadrupolar energy, m) = (|E?, quadrupolar energy, m))*.

Here we have used the abbreviation:
q:= (1/V2)vy(©q) DEo(S2). (A2.4)

Insertion of the tetrahedral angle yields ¢ = 3(1 —3cos® 3,).
In the text, we have omitted the label g for the quadrupolar energy and have
written |I', ) = I', quadrupolar energy, m).

Appendix 3, The Markovian limit of the relaxation kermel

From equations (29) and (13) one has the following expression for the relaxation
kernel occurring in the equation of motion (15) in symmetrized form:

I\‘-Ifc\,n(s) = %Z Z Plz\;m';rcm(s)(oi)c\,f‘em - Oz,r:m’)(oi,l’cm - Oi,r;m')' (A31)

m T'm’

Diagonalization of the matrix K(s) yields the eigecnmatrix A(s) and eigenoperators
O,, which are linear combinations of the originally chosen operators O,. Omitting
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the superscript A in the following, we have for the elements of A(s), using (30):
Ap(s) =D > {OTm|A Hiy [OT' m) X1 1o (O} pom — Ok i )P
I'mIMm

X (G4 ){(7+ )+ [@ = (m' - mw,]*}
2

= . (¥+s)

P RN ey g (432
Here, 4 is one of the broadenings ~ or 4, and & is either w,(T) or zero, cf
equation (30). X r. reflects the detailed balance of the spectral functions and in the
high-temperature approximation for A, it is given by X = (Xyrgr) - We have
restricted ourselves to low temperatures in (A3.2) since at higher temperatures 4 > s
is easily fulfilled in NMR experiments, Then the dependence of A, (s) on the ‘inverse
measuring time’ s [23] can trivially be neglected. Thus we concentrate on situations
where 5 is of the order of or smaller than s. The only restriction we have to make
is to choose s such that w, > |s| is fulfilled. Since w, ~ 107% s, this situation is
met in almost all spin—lattice relaxation experiments. Thus, we are allowed to replace
(F+ )/ {(5+ 8)* + [® — (m' = m)w,]*} by (5 + 8)/[® = (m' = m)w,]? in (A3.2)
everywhere except for resonances & = w,,2w,. These will be considered explicitly
later. The above replacement allows us to write

Ar(s) = Ax(s) + A(0) (A3.3a)
2
Ar(s) = Z Ak;n(d)_sm (A3.3b)
n=—2 z
: 7
A= Y Akmm. (A3.3¢c)
n=-2 z

A, (s) is of the order O([d, /(& — nw,)]?) < 1. The equation of motion (15) then
reads:

(B0t (M1 = [s + Bk(8) + ALO] AL OR(O)); = [s + AL(0)] (A, O (O}
(A3.4)

yielding an expenential law for the time evolution of the operators Aer,’c‘(t),
(Aeqéé(t))l = ¢ exp[AL(0)¢] in second order with respect to d,.

Next, we consider a resonance w,(T) = nyw,, ny, = +1, 2. Since this is
of relevance only for A — E transitions, we have to use the broadenings v. We
decompose A.(s) in the following way:

Ak(5) = Biny (1 + 8) + Ay (v + 8)7! (A3.5a)
where
2
B, = ) Agalwd(T) +new ] (A3.5b)
nz-2

n#Eng
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and we have

Ap(0) = By ¥ + Apnyy {A3.5¢)

in this case. Here B, is of the order O((d,/w,)?) <« 1. Neglecting this small
term in the equation of motion, we have in second order with respect to d,:

(Aeqoi(s))l = [s + Ak(O)“//(‘Y + S)] —](Aeqo—di(o))l
> [s + A, (0)]7H{A,0:(0) (A3.6)

for times that are sufficiently long to determine A .(0).
Conscquently, the limit s — 0 performed in the text in the calculation of the
transition probabilities does not provide a problem in the high-field approximation.

Appendix 4. The intermolecular dipolar interaction
Inserting equation (42) for Hf{ (7} into the series expansion (R,, = R, —r_):

Balrg) S0 (o

(R

Yin(“ku))
(1)

(Reu)? (A4

where the subscript ‘(0)’ means that the derivative has to be taken at the coordinates
(w;, R;), yields, using the gradient formula (43) and the definition (44) for the
coupling strength

sz‘,m(i;m("):s\/( )Z DD, (2)Yy.0 (1) (Ad.2q)
n=—2

R}, (5;6)V =0 (A4.28)

2 2
R0 (00 =3/ () (5] 3 D) XEM)Veaer) (A40)

RS, (z¢)<3—3\/(—)( )ZD L (2)

X [X$(n) Y5 p_s(w)e® + NA5(n) Y, a(w;)e™™)] (Ad.2d)

where we have used the abbreviations:
Xp(n) = —5/UC(1,2,31,n)C(1,3,4—1,n + 1)
+ C(1,2,3;-1,n)C(1,3,4;,1,n — 1)] (A4.3a)

X2(n):= i%\/g[cm,z,s; F1,2)C(1,3,4,F1,n T 1)C(1,4,5,F1,n F 2)].
(A4.3b)
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E-symmetric operators are given by

(9@ =0

RE, (i ¢)“>—3\/(—) (5) 3 DOm0 XKE Vs ili)e®
el

R (59)® =3 (8”)(%)2 i D (2) XE(R)Y, a0, )

B, (:0)9 =3 (3")(7’;—) ngjzo (20 XE() Yy ()6

with

XE(n) = 5,/3C(1,2,3~1,n)

XE(n):= $\/1C(1,2,31,0)C(1,3,4 1,0+ 1)

XE(n):= —5\/B[0(1,2,3 1,n)C(1.3,4 ~1,n + 1)C(1,4,5 —1,n)

+C(1,2,3%-1,n)C(1,3,41,n — NC(1,4,5,—1,n)

+C(1,2,3;-1,n)C(1,3,4,—1,n — 1)C(1,4,51,n — 2)]

Ry (58)® = (-)™ [R5 _,.(i ).
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(Ad.4a)

(Ad.4b)

(Addc)

(Ad.4d)

(Ad.5q)

(A4.5b)

(Ad.5c)
(A4.6)

Note added in proof. In the meantime a theoretical work on the NMR spectra and spin-laitice relaxation
rates of CD3 groups has been published by Heuer [50). He showed that for small momentum transfer and
high rotational potentials, strong relations exist between the relaxation rates and the finite temperature

specira of CDj groups and the incoherent scattering function.

His resuits concerning the spin—lattice

relaxation rates coincide with the small momentum transfer and high rotational potential limit of our
expressions given in section 3.3,
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