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High-field spin-lattice relaxation of methyl groups: relation 
to neutron scattering 
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lnstilut fur Physikalische Chemic, Universitlt Mainz, Postfach 3108, D45W Mainz. 
Federal Republich of Germany 

Received 2 March 1992, in final form 8 June 1992 

AbslncL Ihe modem lheory of highdeld spin4atlice relaxation i s  applied to methyl 
group rotation. It is shown that the same lime mrrelalion functions are observed 
in nuclear magnetic resonance ( N m )  relaxation aperiments and in inelastic neutron 
sgllering (INS) experiments. A linear relationship i s  derived between the speclral function 
S ( w )  observed in INS and the spin-latlice relaxation rate T;’(w) as a function of the 
lamor frequenq. The similarilia between lhe two methods are pointed out. For CD], 
NUR experiments on systems with high tunnelling frequencies yield the width of the quasi- 
elastic Ea ++ Eb line of INS. For CHI. the effect of intermolecular dipolar interactions 
on the spin-latlice relaxation lime TI is calculated using a wria expansion in VIR<,  
where r i s  the radius of lhe methyl group and R, is che distance of the mnsidered 
proton i from the cenlre of the CH, group. I1 i s  shown that for qxtems with high 
tunnelling frequencies TI is mainly determined by intermolecular dipolar interactions, 
whereas these have a negligible effect on spin convemion. TI experiments on diluled 
CHIconlaining systems yield the width of the inelastic A ++ E line, also in lhe soalled 
‘quasi-clauical‘ temperalure regime. 

1. Introduction 

The rotational dynamics of light molecules like hydrogen or methane and molecular 
groups like methyl groups has been investigated in a variety of experimental and 
theoretical studies in the past [l-31. A common feature of all these systems 
undergoing rotational tunnelling is that they consist of end-standing identical particles. 
Owing to the indistinguishability of identical particles, minima of the rotational 
potential have to be strictly equivalent. In the case of methyl groups, on which 
we will focus in the following, the rotational potential has to be invariant under 
permutations of the three end-standing protons (CH,) or deuterons (CD,). For our 
purpose it is sufficient to disregard odd permutations corresponding to the exchange 
of two particles. This means that we can restrict ourselves to ‘right-handed‘ or ‘left- 
handed’ states of methyl groups [4], since the barriers for transitions between these 
states are outside the energy range considered here. Consequently, the Hamiltonian 
has the symmetry group C, (which is isomorphic to the permutation group A3), and 
all eigenstates can be classified according to the irreducible representations r of q, 
i.e. r E {A,E’,Eb). We shall call r the ‘symmetry’ or ‘rotor symmetry’ in the 
following. 

The eigenstates of the Hamiltonian describing the rotational motion of the methyl 
groups will be denoted as lur), where U is a librational quantum number and r 
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the symmetry. States IuE’) and IvEb) are degenerate, the degeneracy being of 
Kramers type [SI, and are different in energy from states luA) by a separation 
A, (:= E: - E ) ) .  The ground state of the spectrum of the rotational Hamiltonian 
is IOA) (cf figure 1). The splitting A, (= E t  - Et) typically ranges from 0.1 to 
100 peV for CH, whereas the lowest librational energy Eiib. i.e. the energy difference 
between states with U = 1 and U = 0, is of the order 5 to 15 meV. Furthermore, 
the signs of the splittings A, alternate with the librational quantum number U (A, 
is negative), and for sufficiently high barriers of the rotational potential lA,l B lA,l 
holds. 

F i y r c  1. Energy levels of 
CHJ/CD~ groups for a three- 
fold potential. The poten- 
lial tamer V3 is chosen to 
be 408 (A, = 2.54 x 
lO-’B), where B is the ro- 
tational mnstant. The mta- 
tional states are labelled by a 
libmlional quanlum number 
Y and a symmetly quantum 
number r ,  Ivr). Also indi- 
cated are the splittings A, 
(see text). 

The main difference between CH, and CD, experiencing the same rotational 
potential lies in the increase of the moment of inertia 0 by a factor of two when 
CH, is substituted by CD,. Thus, in units of the rotational constant B ( B  = h2 /20 ,  
B(CH,) E 647 peV, B(CD,) E 323.7 peV), CD, ‘sees’ a potential of doubled 
height, which decreases the ground-state ‘tunnelling’ splitting A, by factors of 10-50 
relative to CH, (A, is exponentially small in the potential barrier height). 

The symmetry arguments given above also hold in the presence of coupling of the 
rotational motion of the methyl groups to other spatial degrees of freedom, e.g. in the 
presence of coupling to phonons. Physically, this means that phonons cannot induce 
transitions between states of different symmetry r but only between states of the same 
symmetry and different librational quantum numbers U. Thus, the symmetry r is a 
constant of motion with respect to any pure spatial operator. This fact distinguishes 
rotational tunnelling systems qualitatively from other (e.g. translational) tunnelling 
systems where phonons or electrons are able to induce transitions between the tunnel 
split states. This means that in methyl-containing compounds quantum effects are 
observable up to temperatures T B A, and the energy scale for which dissipation 
becomes important is given by the librational energy. 

Interactions that are able to change the rotor symmetry r are the spindependent 
dipolar interaction among the particles, the interaction of the quadrupolar moment 
of the deuterons with the electric field gradients in the case of CD, Or the spin- 
dependent interaction of the protons or deuterons with neutrons. The weak dipolar 
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and quadrupolar interactions are considered to be responsible for the equilibration 
of the symmetry species of rotational tunnelling systems (conversion) [6-91. 

These spin-dependent interactions allow the obsewation of transitions between 
different rotational states and the inhence of dissipation on these. Typical 
observations of inelastic neutron scattering (INS) experiments might be summarized 
in the following way [l-31. At low temperatures (T Elib) usually three sharp lines 
are observed, two of which are located at energy transfers iA,,. These correspond 
to A-E transitions and allow the determination of A,. The third line with zero 
average energy transfer originates from E. U Eb transitions and from symmetry- 
conserving transitions r U r. With increasing temperature, all lines broaden and 
the inelastic tunnelling (A - E) lines shift towards zero energy transfer. (Also 
a positive shift at low temperatures has been observed [lo].) Often, shift and 
broadenings in this temperature range (T < Elib) follow an Arrhenius law with 
an apparent activation energy of the order of the librational energy Elib. At elevated 
temperatures (T - E,$) all three. lines merge into a single broad quasi-elastic line; 
the activation energy of the broadening increases with temperature. Usually all lines 
are to an excellent approximation described by Lorentzians. In a few experiments the 
E" ++ Eb line has been found to be narrower than the inelastic tunnelling lines at low 
temperatures [ll, 121. 

In most theoretical studies of the temperature dependence of rotational tunnelling 
[13-151 the coupling of the rotor to the phonons is treated in perturbation theory. 
The temperature dependence of the broadening is found to be librationally activated 
in second (141 and fourth [lS] order. The increase of the activation energy might 
partly be understood from perturbation theory via phonon-induced transitions to the 
second librational states. However, the 'high-temperature' activation energy, which 
has often been found experimentally [16, 171 and is connected in some way to the 
potential barrier height, seems not to be explainable by a perturbational approach 
to the problem. The width of the E' ++ Eb line has been found to be narrower 
than the widths of the inelastic (A U E) tunnelling lines in a more careful second- 
order perturbational calculation [18], in qualitative agreement with the mentioned 
experiments. 

Besides neutron scattering, nuclear magnetic resonance (NMR) experiments allow 
the measurement of line broadenings over a wide temperature range and also the 
determination of the splitting A, in some cases [1%21]. However, the relations 
between the two types of experiments seem not to be obvious. 

It is the purpose of the present paper to show the connections between INS and 
high-field NMR relaxation experiments on methyl-containing compounds. Therefore, 
we briefly recall the main features of the theory of the temperature dependence 
of INS experiments in the next section. In section 3, we apply the standard theory 
of high-field nuclear spin relaxation [22, 231 to CH, and CD,. It will be shown 
that INS and NMR relaxation experiments exhibit a number of similarities. The 
correspondence. between quantities measured in INS or NMR relaxation is worked 
out for some examples of possible future experiments. Furthermore, the importance 
of intermolecular dipolar interactions in the case of CH, will be pointed out and their 
influence on the spin-lattice relaxation times is calculated approximately. Finally, we 
discuss our results in section 4. 
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2. The temperatiiffdependent scattering function 

In this section we briefly recall the main results of the theory of inelastic neutron 
scattering on methyl groups. If we assume that the only scattering centres are methyl 
groups, we can write for the incoherent scattering function of a powder sample [15, 
241: 

where we have collected all information concerning the scattering event in the 
structure factors f,( Q )  (spin matrix, scattering length, etc). Furthermore, f,( Q) 
represents the nth term of a series expansion in (QT)' [25], where Q is the modulus 
of the scattering vector Q and T is the radius of the methyl group ( T  IT 1 A). 
Finally, 4 is the methyl rotation angle and (A) denotes a thermal average, i.e. 
(A) = Tr[Aexp(-pH)]/Trexp(-OH), where p is the inverse temperature. Note 
that the term n = 0 yields a &function spectral line at zero energy transfer. This line 
has its origin in the fact that the motion of the methyl protons is restricted to a finite 
area. In principle, all other terms with n # 0 contribute to the scattering function. 

The determination of S ( Q , w )  has been the subject of many experimental and 
theoretical studies. In most of the proposed theories [14, 15, 181 the following 
Hamiltonian is investigated: 

H = HR + H ,  + HRp (20) 

with 

HR = -sa$ + V ( 4 )  EFX,,:,, (B) 

Hp= xWk(b:bk + 112) (2) 

u- 

k 

H ,  = c[s; cos(34) + 9; sin(34)l(bk + b:) E c g~,,,X,,:,,r(bk + b:). 
k k . r  Y , Y '  

(U) 
Here, B is the rotational constant and usually only the lowest-order terms of the 
potential, V ( 4 )  = V,cos(3+), is retained in HR. The coupling between the phonon 
bath and the rotor is assumed to be linear in the phonon coordinates bk and cannot 
change the symmetry of the rotor. The operators X,,:,,,, E IvT)(u'T'I are the 
'standard-basis' operators introduced by Hewson [14]. In terms of these operators 
the scattering function (1) reads 

m 

S ( Q , W )  = f , , ( ~ )  (vrle'"mlu'r')(~'r'le-'""~T) 
%=U w , r  p,p',r'  

where X p , r : p r ( t )  = eiHi x p,r,:pre-iHi. At low temperatures (T 5 Elib), where 
mainly the librational ground state IS occupied, the relevant time correlation functions 
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are of the type (X,,r,r,(0)X,,r,:,r( t)). Furthermore, the ‘non-secular’ terms with 
@ # v and p‘ # v’ turn out to be quite unimportant for S(Q,w). The physical 
reason for this is that these terms describe the decay of correlations between distinct 
quantum coherences. 

Thus, the relevant spectral functions are 

(4) 
r,r‘ 1 m  

2 n  -m 
Sv,v,(w) := - 1 dle-iYf(X,,,,,,,(0)X,,r,,,r(l)). 

In most of the theoretical treatments of the temperature dependence of rotational 
tunnelling, the spectral function S f f ( w )  is tackled in second-order perturbation 
theory with respect to H,. These calculations result in Lorentzian lines for S$(w) 
with different widths. For the inelastic (A U E) tunnelling lines a temperature- 
dependent renormalization of the transition frequency A,,, to be denoted as w , ( T )  
in the following, is found. We shall not repeat the resulting expressions here, but 
only note the following. Hewson [14] and Hausler (151 found the broadening of the 
inelastic (A U E) tunnelling line and of the E“ U Eb line to be almost the same 
(differences are mainly due to different values of g&”, and gF,,). Wiirger [18] 
found a reduction of the width of the Ea - Eb line, in qualitative agreement with 
experiment. The similar broadenings obtained by Hewson have their origin in the 
fact that the lifetime-broadening processes in the initial and the final state are treated 
independently and the resulting widths are added. This is allowed only for states with 
different energies. If the states have the same energy, the width of the corresponding 
line is reduced due to correlations between phonons resonating in the initial and the 
final state. This is the physical reason for the reduced linewidth of the E‘ U Eb line. 
However, Wiirger finds a zero width for Or U Or lines, which means that here the 
mentioned mechanism would eract& cancel the linewidth. Perhaps this point needs 
further investigation. 

Finally, we note that the spectral functions Sr;F,’(w) might be written as 

sL;F,‘cw) = (Xupvr)L:E:(a)  (5)  

where L:r:(w) denotes a Lorentzian line (with real part z/[z2 f ( y  - w) ’ ] )  of 
width z centred at the renormalized transition frequency y. e.g. Re[S(c(w)] = 
(&k&/t? + [w,(T)  - wiz}, Re[s&iE(w)l = ( X u ~ : o ~ ) i ’ / ( i ’ ~  + w Z ) ,  where Y 
and 7 denote the widths. If we approximate the thermal expectation value (X,,,.,) 
by its value in the absence of any coupling, IfRp = 0, we easily find 

= T r t ~ - P ( f f ~  + Hp)lX”r:”,r}/Tr{exp[-P(HK + f fp)I} 

= exp(-PEL)/Z, (6) 
where Z, := E”,. exp(-PEF). This clearly demonstrates that the low-temperature 
spectral function is determined mainly by S:$’(w). 

3. High-field spin-lattice relaxation of methyl groups 

3.1. The equation of motion for the spindensily matrix 
Before we turn to the specific problem of spin relaxation of methyl groups, we shall 
outline the general theory of high-field nuclear spin relaxation [22, 231 in a way 
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directly applicable to our situation. The Hamiltonian of a system of like spins in a 
static magnetic field reads 

H = H, + H I , +  H L  (7) 

where H ,  = --flBUIz = -wzIa represents the Zeeman interaction of the spins with 
the static magnetic field B, aligned along the z axis, HL is the Hamiltonian of the 
isolated lattice (all non-spin degrees of freedom of the sample) and HI, stands for 
the spin-lattice interaction (dipolar or quadrupolar interaction). HIL is decomposed 
into a static and a ‘fluctuating’ contribution, the former of which supplements the 
%man Hamiltonian: 

H = HI + AHIL + HL (8) 

where (HIL)L = Tr(&HIL), and pL is the lattice-density matrix. This decomposition 
ensures (AHIL)L = 0. 

Using a standard projection operator technique [26, 271, the following non- 
Markovian equation of motion for the reduced density matrix u ( f )  := TrL[W(t)], 
where W ( t )  is the total density matrix, of the spin system is obtained: 

HI = H, + (HIL)L AHIL = HIL - (HIL)L 

a,u(t) = -i[Hl,u(t)] - d r K ( r ) u ( t -  7) (9) Ai 
where [A, B] denotes the commutator and K( r )  is the relaxation kernel to be 
specified later. The approximations made in the derivation of (9) have been 
exhaustively discussed in the literature, see e.g. [22, 23, 26, 271. 

In the next step we expand the spin-density matrix into an orthonormal set of 

where 

For typic; spin systems the operators 0, may be chosen as the irre cible tensor 
operators T,,p, where 1 is the rank and q the order of the quantum coherences [U]. 
This yields the equation of motion for the expectation values (O,.(t))l: 

( 9 4  

We now make the following approximations. 
(i) We restrict ourselves to high static magnetic fields, where wz is much larger 

than the energy shifts due to (HIL)b These are of the order of 5C-200 kHz for 
protons and deuterons, whereas typical Larmor frequencies are of the order of MHz. 
Then the relaxation kernel K ( r )  can be calculated in second order regarding AH,,. 
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(ii) We assume the high-temperature approximation to be valid for the %man 
spin energy wz,  i.e. exp(-pw,) U 1 - pw,. This is allowed for T 2 1 mIC 
One implication of this high-temperature a p x i m a t i o n  is that we have to replace 
(O,(t)) ,  by (O,( t ) ) ,  - (O,)?, where (O,), denotes the thermal equilibrium value 

(;U) We restrict our attention to the relaxation of operators corresponding to zero- 
quantum coherences (e.g. I = ) .  Then all operators 0, represent linear combinations 
of projectors onto the single spin states. A coupling of the time evolution of 
such operators to the time evolution of operators corresponding to multiquantum 
coherences (e.g. I , )  will be neglected in the following. This is allowed exactly, if the 
initial spin-density matrix u(0) is diagonal (e.g. in an inversion recovely experiment). 
Even if this is not true, the neglect of couplings is allowed for times that are long 
compared to the decay time of the initial multi-quantum coherence. If e.g. u(0) - I = ,  
this time is given by T2, which is small compared to the timescale of the time evolution 
of longitudinal operators, e.g. I,. Since in solids at low temperatures one has TI >> Tz 
(TI - 1 s, T2 - 100 ps), this approximation provides no problem for our treatment. 

Of 0,. 

With the definition 

(4qo,(t)), := (O,( t ) ) , -  (0,P (11) 
we have the following equation of motion for the expectation values of longitudinal 
operators 0, (e.g. I = ) :  

N 

3 ( A e q 0 d O ) ~  = - ~ / t d r K , , , ( r ) ( A , O , ( t  U - '))I (12) 
n=l 

where the elements I < k , n ( ~ )  of the relaxation kernel K ( r )  are given by 

Khn(.) = -c o,;,[P,,p(r)O,,B - P0.,(7)0";01. 

Pa$(.) = 2Re[((PlA~,,(o) l~)(~lA~IL(~) iP))L exp(-iwp,r)I (14) 

(13) 
0.0 

Here, 10) and Ip) are eigenstates of the spin Hamiltonian HI, Hila) = E J a ) ,  
Cl,;, = (aJ0,Ia) and the transition probabilities P,,p(r) are given by 

for any Hermitian AH,, [28]. This transition probability is determined by the 
time correlation function ((plAH,,(O)la)(alAH,,(r)lp)),,  where time evolution 
is with respect to H,, AH, , ( r )  = exp(iH,.)AH,,exp(-iH,r), and the trivial 
time evolution due to HI determines the oscillating function exp(-iwp,r), where 
U@, := E; -,EL. 

The equation of motion (12) is solved formally be means of Laplace transforms, 
if K ( r )  represents the matrix of the I < k , n ( r )  and A,O(t )  denotes the 'vector' with 
elements (A,O,(t)),, IC = 1,. . . , N :  

A,,O(s) = [s + K(s)]- 'A,O(O).  (15) 
It is evident that the equation of motion (15) yields a multi-exponential law 
(AeqO,(t))I = xi ai exp(bit)(AeqOi(0)), for the time evolution of (A,O, ( t ) ) ,  
only if K(s)  = K(0) independent of the Laplace parameter 5. This condition is 
equivalent to setting the upper limit of the integral occurring in equation (12) to 
infinity. We shall not do this here, since some of the transition probabilities relevant 
for the relaxation of methyl groups show singularities for some frequencies, which 
have to be handled with care. 



9160 G Diezemann 

3.2. Applicolion to methyl groups 

It is our purpose to calculate the transition probabilities P , , B ( ~ )  for the specific 
example of methyl groups. Here HL is given explicitly by equation (2), but we need 
not make any assumption about the strength of the coupling between the methyl 
rotors and the phonons nor about its specific form. We shall only need the fact 
that the rotor-phonon coupling does not mix different symmetries in some of the 
calculations. Our main aim is to show that the transition probabilities P- ,@(T)  are 
related very closely to the spectral functions SF;F,'(w) and to discuss these relations 
in detail. 

The spin-lattice interactions to be considered here are different for CH, and 
CD,. In the case of CH,, it is well known that the dipolar interaction among the 
protons is the only interaction that is of relevance. We shall first concentrate on the 
intra-methyl dipolar interactions, hut also consider intermolecular contributions later 
and discuss their relevance for T,. For CD,, the main interaction is the interaction 
of the quadrupolar moment of the deuterons with the electric field gradients (EFG) at 
the site of the nuclei. These EFG originate from the electronic charge distribution of 
the chemical C D  bonds (291. Furthermore, for CD, the EFG are axially symmetric 
to an excellent approximation [30]; there is only one non-vanishing component of the 
EFG. Of course, deuterons also are coupled via the dipolar interaction among the 
deuterom. However, the strength of this interaction is smaller by a factor of 1CO-200 
than the strength of the quadrupolar interaction. Thus, we can neglect the influence 
of the dipolar interaction completely in the case of CD,. 

In order to treat both cases, the relaxation of CH, and of CD,, in the same 
formalism, we write for the spin-lattice interaction Hamiltonians HI, HE for CH, 
and HIL E H; for CD, and denote the corresponding Hamiltonian by H L ,  where 
X = D means dipolar interaction for CH, and X = Q means quadrupolar interaction 
for CD,. The coupling Hamiltonians might be written as 

H i  = E ( H L ) ( ' )  (16) 
(k) ' 

where the sum (k) means the sum over the three single-particle quadrupolar 
Hamiltonians of the deuterons in the case of CD,, i.e. k = 1,2,3. In the case 
of the dipolar interaction ( A  = D) among the protons of a CH, group, one has to 
take the sum over the three possible pairs of protons, i.e. k = (1,2),(1,3),(2,3). 
In appendix 1 explicit expressions for the (Hk)( ' )  are given and HtL is written in 
symmetry-adapted form. It is shown that the form is 

where the summation over k in (16 IS now replaced by a summation over r, cf (A1.5). 

operators and 'spin' operators, respectively. r denotes the irreducible representations 
of C, ('symmetry'); re is conjugate to r, i.e. rc = {A,Ea,Eb} for r = {A, Eb,Ea}. 
0, is the angle between the principal axis of the coupling tensor (A = D: the 
internuclear vector; X = Q: approximately the C-D bond axis) and the rotation 
axis of the methyl group and 4 is the methyl rotation angle. Q,, E (pU;au) defines 

Here d,, R&,(@,; Q,,; 4) and T&( i '  A)  denote the coupling strengths, 'space-part' 
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the Orientation of the static magnetic field Bo in a crystal-ked frame, where the z 
axis is chosen as the methyl rotation axis. This orientation is assumed to be fixed 
throughout our discussion, since. the methyl group is kept at its site. Thus, the 
operators qr,,,(@,;QU; &), given by 

e,,,(%n") = v u ( @ , ) q * ( n u )  (W 

@,''(~~;n~;&) = - u I ( @ A ) @ ~ ~ ( a 2 , ) e ' +  + v2(0,)D?j,,(n,)e-Z'+ 

@,L%n"; 4) = (-I)Y@,'-A@,; a"; &)I* 
(1%) 

(1&) 

are time dependent on& due to their dependence on 4. The fact that we keep 0, 
k e d  physically means that we exclude phonon modes that incline the rotor from 
our treatment. Otherwise we have S ~ , ( T )  = exp(iH,T)R,exp(-iHpT) # a,(O), 
see equation (2). The functions U , ( @ , )  are given explicitly in appendix 1, (A1.6), 
and the D!?,),,,(Q,) denote Wigner rotation matrix elements. Note that for CH, 
vl(OD) = 0 and thus operators e'+ do  not contribute, whereas for CD, all terms are 
non-vanishing, which has some interesting implications for the angular dependence 
of the spin-lattice relaxation time Tl in this case [31]. 

In order to calculate the transition probabilities we have to specify the spin states 
of the methyl group. As already pointed out in the introduction, it is sufficient to 
disregard odd permutations from our treatment. This means that we can build simple 
product functions of rotational and spin states with the only requirement from the 
Pauli principle that the product functions are of A symmetry. Otherwise we have to 
construct antisymmetric states for CH, and totally symmetric states for CD,. We shall 
denote the spin states for CH, and CD, as Irm) in the following, where m mr is 
the magnetic quantum number. The product states can then be written as 

Iurm) := lur)lrCm) (19) 

in both cases. The only difference between CH, and CD, is the accessible values of 
the magnetic quantum numbers m. We do not indicate this, to keep the formulation 
more transparent Furthermore, the Pauli principle is manifested in (19), which 
implies that a strong statistical correlation between the spin and rotational states 
must be kept in mind in the general formalism of section 3.1. This is qualitatively 
different from other spin systcms. 

For the decomposition of the spin-lattice Hamiltonians (8) we have to calculate 
(H&)L and thus (R&,,(,m(Oh;Ru;4))L. Sincc R&, is independent of the rotation 
angle 4, we have 

and for the remaining terms the expectation values are needed. Since e'"4, 
n # 3m, is purely offdiagonal with respect to the symmetry r in the basis {lvr)} 
and 

(X,,:,,r,)L = 6r,r, ( ~ u ~ u , r ) L  (21) 

(@,;(@,;a";+))L = ( J q & % f l " ; 4 ) ) L  (2&) 

holds because H L  is diagonal with respect to r, it is immediately evident that 



This decomposition immediately leads to the conclusion that only symmetrychanging 
transitions are relevant for the transition probabilities. This conclusion is independent 
of the perturbational calculation of the transition probabilities and is due only to the 
independence of the of the rotation angle 6. It explains Haupt’s [32] finding 
that symmetryconserving transitions do not contribute to T, in CH, systems in second 
order. It will be seen later that this does not hold rigorously if intermolecular dipolar 
interactions are taken into account additionally. 

For the static Hamiltonian (Hk)L, which supplements the Zeeman Hamiltonian, 
it is sufficient to retain only the so-called secular part (H,f)L, which commutes with 
H ,  P I :  

(H, f  )L = d A  %:U( A ;  % ) T t U (  (23) 
This operator does not mix spin states of different magnetic quantum number. Then, 
the spin states Irm) are the ones given e.g. in [32] for CH,, where ( H g ) L  does 
not mix spin states of different spin quantum number I. This does not hold for 
CD,. Here the secular static part of the quadrupolar Hamiltonian mixes spin states 
of different spin quantum number I but the same magnetic quantum number m. 
Thus, I is not a good quantum number in the case of CD,. The eigenstates of H ,  
are given as linear combinations of states with different I in appendix 2. Thus, we 
have for both cases, CH, and CD,, 

HIITm) = EkJrm) (24) 

where the deviations of E,!.,,, from E:,,, = -mu, are small, of the order of 
O(d,/w,) (2 Consequently, we find for the transition probabilities (14): 

Pr,m,;r,,, A ( 7 )  = 2 Re{ (( rmlAHk( 0) I r’m’) (r’m’(A H k (  7) 

x exp[-i(Ek, - E~,, , , , )T])  (25) 

and we are allowed to approximate E;,,, - E;,,, by (m‘- m)w,. For the calculation 
of the time correlation functions occurring in (Z), it is convenient to proceed similarly 
to section 2, i.e. to write 

= (urmlAH$lu‘r’m‘)X,r,”,r,(T)lrsm)(r:“l. (26) 
v l ”  v‘r‘m‘ 

Thus, (25) becomes 
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Again, the terms with U # p and U' # p' are of minor relevance. Introducing the 
spectral representation 

we have for the Laplace transform of the transition probabilities 

(29) 

Thus, the transition probabilities are determined by the HilbertStieltjes transform 
[U] of the spectral function Sf;F,'(w), which also determines the incoherent 
dynamical structure factor S(Q,w)  in INS experiments. This is also evident directly 
from equation (18). which shows that the relevant time correlation functions are of 
the type (ein+(u)e-im+(r))L, n, m = 1,2, which are similar to the lowest-order terms 
in the expansion (1). Therefore, INS and high-field NMR relaxation experiments are 
determined by exactly the same time correlation functions and we can write 

Pr;m,;r+(s) ,l a S(Q < P-',s + i(m' - m)w, ) .  

It is easily seen by considering the uncoupled case, 

SF;$'(w) = exp(-PEF)6(EF - E;: - w ) / Z ,  

that the most dominant terms in (29) are those with U = Y'. In the case of dissipation 
the 6-function has to be replaced by the appropriate Lorentzian, cf (5).  However, 
E: - E:: > wz for U f U' in almost all situations of physical interest. Furthermore, 
the matrix elements of AH& between states of different librational quantum numbers 
are smaller than those between states of the same librational quantum number for 
not tm small potentials and states with energies well below the barrier height V,. 

At low temperatures, where the librational ground state is predominantly occupied 
thermally, the transition probabilities are given by the U = U' = 0 terms of (29). If 
we assume the form (5) for SF,;"(w), we explicitly have in this case 

b I Z X  
Gml;Am(s) = zI(oAmInHLIoE m )I ( OA:UA)L 

x (7 + ~ ) / I ( Y  + s)* + [ w , ( ~ )  - (m' - m)w,12} 

x (7 + . ) /I(? + S)Z + [("- m)w*lZ}. 

(300) 

(3@5) 

A b t Z , y  
p p m , ; E b , ( 5 )  = ~I(OE'~PH:LIOE m ) I  ( UE:UE)L 

Here y and j denote the broadenings and w , ( T )  is the temperature-dependent 
renormalized ground-state splitting A,,. The transition probabilities P&,,,;Ebm( s) 

are zero in the case of CH,. It is easy to see from (30) that P$Lm,;rcm(s) can be 
replaced by P:c,,,;re,,(0) if y , j  2~ s. This is the condition to set the upper limit 
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of the integral in the equation of motion, equation (9), to infinity. However, this 
is not allowed if y and 4 are of the order of the inverse measuring time s. It is 
shown explicitly in appendix 3 that even in this case the substitution of P,?,,,;rem(~) 

negligible in second order. Furthermore, the same substitution is shown to be allowed 
also in the area of resonances w, (T)  = (m' - m)w,. These results are in accord 
with the more general ones of (23, 331. 

Even though we will concentrate ourselves on the discussion of the relations 
between the spin-lattice relaxation time TI and S(Q,w),  which means we choose 
only the specific operator Oko = I,, the following remark concerning the operators 
0, seems to be appropriate. There are different ways to choose these operators. 
One way is to start with an expansion of the spin-density matrix into irreducible 
tensor operators T,,,, where 1 = 0,1,. . . ,21. Then 1 = 0,1,2,3 for a dipolar 
coupled three-spin-ln system (TI,": %man energy; T2,u: dipolar energy; 
octupolar energy, three-spin order (341). For deuterons, there are only the Zeeman 
energy In the next step the number of 
relevant operators can be reduced for some physical situations; e.g. for protons 
often the spin temperature concept is valid, which implies (T3,J1 = 0. The most 
important operators are always such operators that are constants of motion with 
respect to H ,  + H ,  and change in time only due to AH,,. Such operators 
are also called quasiconstants of motion [35]. In the case of methyl groups the 
symmetry species concentrations are additional quasi-constants of the motion as 
compared to other typical spin systems. These might be represented by operators 
of the form 0, = [Tr l (O~) ] - l / *~ , , ,  Irm)(rm[, to be compared to e.g. I, = 
[Tr,(l:)]-1/2Cr_m[rm)(rml. For CH,, the choice of the operators 0, has 
been discussed for a variety of physical situations [36]. Whatever the specific choice 
of the 0, might be, it turns out that the relaxation of the Zeeman energy is 
coupled to the relaxation of other quasi-constants of motion at low temperatures, 
i.e. K z , ,  # 0, k # z. However, it is always possible to extract the autorelaxation rate 
of the Zeeman energy, Kz ,+  E T;', from inversion recovery or similar spin-lattice 
relaxation experiments [37]. 

Noting that (rml1,lrm) = mwZ, one finds the Hebel-Slichter equation [38]: 

by Pr~,,,rc,(0) A induces an error that is formally of the order O ( ( d , / t ~ , ) ~ ) .  This is 

and the quadrupolar energy T2,,. 

where we have defined 

(32) 

and the Pr.m,;rGm(s) A are given by (29). Thus ",(A) is a measure of S(Q << F 1 , w )  

t~,.:,,,,;~~,, A := lim P ; : , , , , ; ~ < ~ ( S )  
a-O 

at some multiples of the Larmor precession frequency wZ and the information from 
both quantities is directly comparable. What has been called 'correlation time' in 
much of the NMR literature is identical to the line broadening. Introducing the 
imaginary part of the Hilbert transform 
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we find for the transition probabilities 

w;~,,,;~,,, = 2C i(urmlaH~iu'rfm')12S~;~,'((m' - m)w,). (336) 
Y,"' 

This relates the relevant spectral function (4) of neutron scattering with the transition 
probabilities causing spin-lattice relaxation, one of the main results of this paper. 

The squared matrix elements of the interaction Hamiltonian A H ;  are given by 

I (urmlA H i 1  u'r'm') 1' 

where r" is determined by the pair (r,r'). 
TI experiments are frequently performed on powder samples. In this case it is 

often allowed to perform an average over 7''' rather than over the law governing the 
time evolution of the magnetization, e.g. exp(-t/Tl) [31], where averaging is with 
respect to the orientations of the methyl groups in the sample (i.e. integration over 
the unit sphere Q,,). Utilizing the orthogonality of the Wigner rotation matrices (391 
one easily finds 

(354 ( ~ ~ ~ ~ ~ ~ ( ~ u ) ~ m ; , m ~ ( ~ u ) ) ~ ~ ~ ~  (2) = f6ml.m;6m2,mk 

where 
2* 

(f(QdWder := (a.)/ U dauJrs inPudi i ; f (Qu)  U 

This immediately yields 

(I(4@,;w A; a"; 4)l~' l - ' )12)wder 

= 4[Zll(Oh)Zl(yrleiQIu'r')12 + ~2(0 , )21(~r le-z i~ l~ 'r ' )~2]  (35b) 

which is independent of n (recall that in the case of CH, q( 0,) z 0, cf appendix 1). 
The transition probabilities (33) can be used to calculate the relaxation matrix 
occurring in equation (U). 

We now turn to the specific cases of CH, and CD, relaxation. The matrix 
elements needed in the following have been given earlier in several publications. The 
matrix elements of the dipolar Hamiltonian can be found in [32] and the ones of the 
quadrupolar Hamiltonian in the case of CD, are given in [31]. 

3.3. Quadrupolar rehalion of CD, groups 

For the calculation of Tl(Q) T,(CD,) we use the spin matrix elements given in 
[31]. Note that for the calculation of 7'' it is irrelevant which basis for the spin states 
is chosen, since TI reflects the relaxation of the Zeeman energy This does not 
hold if we wanted to calculate, for example, the autorelaxation rate of the q u a d N p 0 h  
energy, 7'6'. The spin matrix elements are to be combined with the corresponding 
elements of the type (vIp$,(@,$ nu; 4)Iu'r'). When the squared matrix elements 
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of A H 2  are inserted into equation (33) for the transition probabilities, we eventually 
find 

T,(CD3)-' = Tl(CD3;A ++ E)-' + Tl(CD3;E *A)-'+ T,(CD,;E -E)-' 

where 

Ti(cD3;A-E)- - - 18 Q 

(36) 

2 

I I (~E ' l@,~(@Q;~u;4) I~ 'A) IZ  
Y Y '  m=-2 

+ l(~E'l@',~,,,(@~; nu; 4) Iu'A) 121m2SF;$(mw, ) (374 
2 

T1(CD3;E - E)-' = & d i x  l I ( ~ E b l ~ , ~ ( @ ~ ; n o ; 4 ) I ~  l o 2  E )I 
YY'  m=-2 

+ l(~E~l@,'-,,,(@~; nu; 4)lu'E")I21m2SF;,E,((nw,) (37b) 

and T,(CD,;E ++ A)-, is obtained from T,(CD3;A ++ E)-' if SF$(mw,) is 
replaced by S$?(mwz) in (37a). lb obtain (37) in this form we made use of 
equation (1&) and the fact that the E states are complex conjugate to each other. 

The temperature dependence of T,(CD,) has been discussed in [31] and we will 
not repeat this here. Instead, we restrict ourselves to low temperatures (u = U' = 0 
in (37)) and to systems for which the tunnelling frequency w,(T) is much larger 
than the Larmor precession frequency w,. In this situation only T,(CD,; E ++ E) 
contributes to the spin-lattice relaxation and Tl(CD,) is a direct measure of the 
linewidth of the quasi-elastic Ea ++ Eb line in INS experiments. If Tl experiments 
are performed using different Larmor frequencies, the lineshape can be analysed in 
addition to the linewidth, which is not easy in INS owing to elastic intensity in the 
energy range of interest. 

'PJ illustrate this point, let us assume that we are allowed to perform the powder 
average (Tl(CD3)-1)wder. Using (35b) we then have 

2 

(T,(CD,;A * E)-i)pder = CAE m 2 S $ t ( m w , )  (3% 
m=-Z 

where (cf appendix 1 and equation (18)) 

c,,, := &d;[ U,( @Q)1(0rlei+10r')12 + u 2 ( o Q )  1(0rle-~'+ lor') 1 2 ] .  (3%) 

For w,(T) > wz it is clear that S,,h (mw,) 0 and that (Tl(CD3)-i)wder is 
determined by the spectral functions S:f(mwz). Thus, a T, experiment can be 
viewed as a fixed window measurement in INS [l]. If we furthermore assume that 
.!?::(mu,) is given by the Lorentzian (XoE,),5/(+2 + m2w:), cf (5) and (33), we 
have on the low-temperature side of the T, minimum 

E A  

(T1(cD3)-1)pvder = (39) 
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since here 3 < wZ.  The constant C is given by C = 4CEE(XUE&. Equation (39) 
allows one to analyse the shape of S,",;"(W) if the Larmor frequency is wried in 
the experiment. The absolute values of 4 and its temperature dependence can be 
compared to those obtained from INS data. Thus, a combination of deuteron Spin- 
lattice relaxation experiments and INS experimenu performed at different Q M~ues 
might yield more detailed information about the Ea - Eb line and the r - r lines 
than either experimental method alone. 

3.4. Dipolar relaxation of CH, groups 

In the case of CH, the dipolar Hamiltonian has only matrix elements between A 
and E states. Matrix elements between E' and Eb states are forbidden by Spin 
selection rules, since E states have spin I = 1/2 and the dipolar Hamiltonian O d y  
contains spin operators of second rank An arbitrary spin matrix element can be 
written as (EbmlT~,,-,,(D)IE'm') = C(1/2,2,1/2; m', m - m')(EbllT~(D)[lEa) 
where C(1/2,2,1/2; m', m - m') is a Clebsch-Gordan coefficient in nomenclature 
of Rase 1391 and (EbllTF(D)IIE") denotes a reduced matrix element. All these 
matrix elements vanish identically, since C( 1/2,2,1/2; m, n) E 0. Consequently, it 
is evident immediately that the spin-lattice relaxation of an isolated CH, group is 
determined on& by A - E transitions, as is well known (321. Thus, we have from 
(33) and (31) 

T,(CH,)-~ = T,(CH,;A ++ E ) - ~  + T,(CH,;E - A ) - ~  (40) 

with 

T,(CH,;A -E)-' = l d 2  24 

2 

1 [ I (UE~I~ , ' , , (Q. ;R, ;~) I~ 'A) I~  
Y Y '  m=-2 

+ I(UE~IR?-,(@D; 52,; 4)lu'A) I z lm2~~$(mu,  ) (41) 

and T,(CH,; E ++ A)-I is obtained from (39) in the same way as in the CD, case. 
Thus, the spin-lattice relaxation rate of an isolated CH, group is a direct measure 

of the width of the inelastic (A - E) tunnelling lines. This means that a temperature- 
and frequency-dependent study of TI of isolated CH, groups will yield information 
about the broadening of the A +.+ E lines even in the temperature range where the 
inelastic lines merge into the quasielastic lines in an INS experiment, i.e. in the so- 
called 'quasi-classical' regime. ?b be more specific, let us consider (T,(CH3)-1)p,ec 
in the Same way as in the CD, case, which is easily obtained from (40) and (41) using 
(356). Thus, we find 

which intrinsically relates T, to S ( Q  << T - I ,  U). Here we have at low temperatures 
and for Lorentzian-shaped inelastic A ++ E tunnelling lines 

a Cm27/(? +'[W,(T) - "QZl2) 
m 

which also can allow an analysis of the lineshape in some cases, namely for not 
too large tunnelling frequencies. In the 'quasiclassical' regime, w,(T) has decayed 
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to zero and (Tl(CH3)-1)mer yields the width of the A - E line. In an INS 
experiment it is not easy to obtain this information, since there the quasi-elastic peak 
is a superposition of A - E, E’ ++ Eb and elastic scattering, including symmetry- 
conserving scattering. On the high-temperature side of the TI minium, 7 > wz 
holds and (Tl(CH3)-1)p,,er is directly proportional to 7-l. Consequently, TI 
experimenu on isolated CH, groups in combination with INS experiments would 
be of particular interest to get more detailed informdtion about S( Q < T - ’ ,  W )  also 
at elevated temperatures. (More specific formulae will be given later in connection 
with the calculation of the intermolecular contributions to TI.) 

Additionally, the same A - E transitions, which determine the spin-lattice 
relaxation rate (M), are also responsible for the symmetry conversion rate (spin 
conversion rate) 7;; [SI, even though TI represents the relaxation of the &man 
spin energy and 7;: is the relaxation rate of the symmetry species concentration. In 
fact, both quantities are expected to be of comparable magnitude at low temperatures 
(T < Eli,,) for systems with large A, [32]. This, however, is not found experimentally 
[a]. There is widespread belief that the intermolecular dipolar interactions between 
the methyl protons and surrounding protons are responsible for the much smaller 
values of TI. Usually, the intermolecular contribution to TI is handled in a 
phenomenological way as was done e.g. by Haupt [32]. The only more systematic 
treatments of intramolecular dipolar interactions known to the author have been 
given by Clough [41] and Zween and Brom [42]. Clough treated the problem of 
spin-lattice relaxation using time-dependent perturbation theory. Even though be did 
not give explicit expressions for the dependence of the intermolecular contributions 
to TI upon the proton-proton distances and the relative orientations, he showed that 
Ea - Eb transitions, which are much more effective than A t) E transitions for large 
tunnelling frequencies, additionally contribute to TI. 

In order to render the discussion concerning the influence of intermolecular 
contributions to spin-lattice relaxation of CH, groups more quantitative, we now 
turn to calculation of the spin-lattice relaxation rates due to dipolar interactions 
between the methyl protons and surrounding protons. For this purpose we write the 
dipolar Hamiltonian for a proton i and the protons of the CH, group similarly tO 
appendix 1 as 

2 

H E ( i )  = -7:c ( - l )mq-m(i ;4)T&(i )  (47% 
r m=-z 

where (cf (A1.4), [22, 291) 

and 
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Here 1:) acts on the spin states of the proton i and I,' = ( l/&)(Iil) + &-xI!j2) + 
&&I!i3)), & = exp(i2~/3) ,  IC 3 0,1,-1 for r E A,Ea,Eb, respectively, ac'ts on the 
spin states of the methyl group. In (426) wiu and Ri, denote the orientation of 
proton i relative to methyl proton U and their distance apart. The form of (42) is in 
accord with the one given by Clough [41]. 'lb proceed, we perform a series expansion 
of the distance dependence of the operators Ii$,,(i;4) in powers of ( r / R i ) ,  where 
Ri is the distance of proton i from the centre of the group. This expansion is 
achieved by using the gradient formula of Rose [39] in the form given by Nijman and 
Berlinsky [7]: 

where 7," is the mth spherical component of r,,; in our case rH = 0, T $ I  = 
+(l/&)r exp(ii$,), 4, := 4, +z := 4 + 2a/3, +3 := 4 - 2 ~ / 3  in the rigid rotor 
approximation. The derivative has to be taken at wi G ( O i ,  ai) and R,, where wi 
denotes the orientation of the proton with respect to the centre of the CH, group in 
a crystal-ked frame. In the following we keep the protons i fured at their equilibrium 
coordinates ( w i ,  Ri) .  This means that we neglect the dependence of (wi ,  R i )  on the 
phonons and thus on time. This is a reasonable assumption for protons located on the 
same molecule to which the methyl group is attached. Othewise there is no physical 
justification for this approximation, since it is the neighbours of a methyl group that 
are also responsible for the rotational dynamics. However, a careful treatment of this 
point is beyond the scope of the present paper. With the definition 

db := -$RT3 (44) 

the Hamiltonian for the intermolecular dipolar interaction can be written as 

where the operators R&,,(i;@) represent series expansions in powers of ( r / R i )  
of the form R;,,,,(i;+) = Et R&,,(<+)(k), where E&,(i;+)(k) is of order 
O ( ( Y / R ~ ) ~ ) .  The expressions for the terms &r,,,(i;4)(k) up to IC = 3 are given 
explicitly in appendix 4. Here we only note the following fact. The operators 
qym(<4)(k) are of the type e'+,,-"+. In contrast to intra-methyl interactions, in 
O ( ( T / R ; ) ~ )  one finds that R&,(~;c$)(~) is a function f(e""), which is an operator 
acting on the rotational states. Thus, in this order also correlation functions of 
the type (e3i+(U)e-3i+(L))L contribute to the transition probabilities and thus to spin- 
lattice relaxation. These types of time correlation functions are similar to higher-order 
terms in the expansion (1) of S( Q, w )  and consequently the correspondence between 
7';' and S(Q << r- ' ,w)  is violated if these terms are considered additionally. 
Furthermore, it is evident that the  static part of H g ( i ) ,  ( H D ( i ) ) ,  now contains 
terms (e3'+),, which are diagonal in the basis {lvr)}. Thus, (Hk(i))L'is temperature 
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dependent in this case, which could be studied by recording the high-field NMR 
spectra of systems containing methyl groups closely surrounded by other protons as 
a function of temperature. However, it is not our present purpose to quantify this 
effect. Instead, we turn to the calculation of the intermolecular contribution to T, 
due to (45) in O ( ( V / R ~ ) ~ ) ,  where symmetry-conserving transitions do not contribute. 
The calculation is very similar to the one performed before; only the spin states are 
to be modified. With the definition 

I r M )  := Irm)lm,) (4) 

where Irm) are the spin States of the CH, group and Im;) those of the proton i, 
M := m -I mi, we have for the transition probabilities in close relation to (33): 

W:M,;roM(i) = 2c I(vrMlAHP,(i)IY'r'M')I2SF;F,'((M' - M)w,). (47) 
Y. Y' 

Here only E-symmetric operators contribute to A H E ( i )  in O ( ( V / R , ) ~ ) ,  cf (22) and 
(A4.4), and the states IvTM) are given by IvT)ITcM). Following CIough [41], we 
write for the spin-lattiw rclaxation rate 

T,(CH,;total)-' = T,(CH,)-' + Tl(CH3;i)-' (48) 

where T,(CH,)-' is given by (40) and (41) and T1(CH3;i)-' is given by a Hebel- 
Slichter formula analogous to (31) but with the transition probabilities (47). Without 
giving the explicit evaluation of the spin matrix elements here, we quote that the 
results can be written as 

T1(CH3;i)-' = T,(CH,;i;A ++E)-'+T,(CH,;i;E -A)-'+T,(CH,;i;E ++ E)-' 

(49) 

where 

T,(CH,;i;A-E)-'= & ( d b ) ' C  [I(vE*IRzE:,(i;+)lv'A)1' 
2 

YY' m=-2 

(333) + l(vEale,'-,,,(C +)lv'A)l21 m2SE.A v ,v , (muz)  

2 
TI(CH,;i;E*E)-'= & ( d b ) ' z  [I(vEblRzE,k(i;+)lvE , a 2  )I 

YY'  m=-2 

(5@) + I ( V E ~ I ~ , ' - , , , ( ~ ; + ) I V  t . 2  E )I I ~ ' S : ; ~ X ~ W ~ )  

and T,(CH,; i; E ++ A)-, is obtained from T,(CH,; i;A ++ E)-' in the same manner 
as before. 

Thus, the intermolecular dipolar interactions modify the A ++ E relaxation rates 
and they lead to Ea ++ Eb relaxation rates. Using our formulae these contributions can 
be calculated in any desired order of r / R i .  It is evident immediately from (N), (48) 
and (49) that for systems with large tunnelling frequencies T, is mainly determined by 
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intermolecular dipolar interactions, as T,(CH,;A L E)-, and T,(CH,; i;A - E)-’ 
are negligibly small in such situations. 

In many proton spin-lattice relaxation experiments it is allowed to perform a 
powder average of T;’, (T;l)Fder Up to O ( ( P / R ~ ) ~ )  one finds from (3%) and 
(A4.4) 

(524 
2ib t + ( ~ / R i ) X ~ ( n ) Y 4 , , + z ( w i ) ( v E . l e -  Iu A)12 

where Y,,,(w) are spherical harmonics and the X:(n) are the expansion coefficients 
given in (A4.5). For Bvw,(w;; r /R i )  one has the same expression hut with the rotor 
matrix elements (uE’le’mIu‘A) and (uEale-2ib1u’A) replaced by (uEblei”Iv’E*) and 
(uEble-2iblu’E*), respectively. If the rotor matrix elements are chosen to he real, 
one eventually finds a surprisingly simple expression: 

AVV,(wi; r /Ri)  = %[2(2 - cos2 Oi)(uE’leiblu’A)2 

+ 5( r /  Ri) sin’ ei cos( 3Qi) ( uE’ leib /VIA) ( u E ” J ~ - ” ~  lu‘ A )  

+ &(r/Ri)2(!30ms40i - 420cos20i + 346)(~E’(e-~’~lu’A)~]  (526) 

Proton spin-lattice relaxation experiments are frequently analysed using the 
and a similar one for B v v , ( w i ; r / R i ) .  

formula (17, 19-21] 

where C, ,  CZrr and wr(T)  are usually fitted parameters and C, is of the order of 
5C2 to lOOOC,. Using (336) and (5) with (Xu,,,), zz 1/3 (high potential harriers) 
in addition to the expressions derived above, we find 

‘1-a - Ad2 D( OEale-2’bIOA)2 + 4 ~ ( d ~ ) 2 ( ~ / R i ) 2 A w ( ~ i ;  r / R i )  (54a) 

C, = 5 C ( d 0 ) ’ ( r / R i ) ’ B w ( w i ; r / R i )  
i 
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if y 5 4 = T - ,  and Y = U‘ = 0 are chosen. 
The connection to the case of an isolated CH, group is made by simply setting 

( r / R i )  = 0 in the above expressions. Then only the first term of C, survives and 

To give an illustrative example, we consider the following experiment performed 
by Muller-Warmuth ef a1 [16]. These authors studied the spin-lattice relaxation of 
toluene and toluene-d, (only the methyl group protonated) diluted in perdeuterated 
toluene-d, and found an increasing spin-lattice relaxation time with increasing 
dilution, demonstrating the importance of intermolecular dipolar interactions. If 
we use as a simple model a CH, group surrounded by a sphere of protons, we have 
[S(OE*leiQIOA)2 + &(r/R)Z(OEale-2i~IOA)2]p for A, instead of the sum over the 
different protons in (54), where R is the radius of the sphere and p denotes the 
number of protons. We only consider toluened, diluted in toluene-d,. Since. there 
are eight molecules per unit cell in a-toluene [43], we use p = 24 in this case and 
multiply A, by 0.1 and 0.25 in the cases of 10% and 25% toluene-d,, respectively. 
Estimating the rotor matrix elements in a harmonic oscillator approximation [U] 
yields (OEalei~lOA) U (OEbleidlOEa) 0.97 and (OEale-Zi”OA) E (OEb/e-2iQIOEa) Y 

0.87. Using these values and ( r / R )  = 0.51 we have for 10% toluene-d, in toluene-d, 
C,/C, = 7x lo-, and for 25% toluened, C,/C, = 1 . 6 ~ 1 0 - ~ ,  to becompared to the 
experimentally found ratios C,(exp)/C,(exp) which equal 6.6 x and 1.6 x lo-’, 
respectively. Thus, even this quite unrealistic model for the intermolecular dipolar 
interactions yields reliable results. If we evaluate the spin-lattice relaxation times 
at T = 12 K with the parameters given by the authors, we find for pure toluene 
TI( 12 K) = 2.3 s to be compared to the value T p (  12 K) ?z 30 h for C, = 0. This 
latter value is easily seen to be of the order of magnitude of typical spin conversion 
times [8]. Additionally, we note that our simplified model yields an intermolecular 
contribution to the constant C, of less than 3%, which also is in accord with the 
experimental finding that C,(exp) remains unaltered for all systems studied by the 
authors. This fact shows that the modification of the relaxation efficiency of A ++ E 
transitions due to intermolecular dipolar interactions is rather small. We expect that 
the same holds for intermolecular contributions to the spin conversion rate, which we 
consider as an indication of the validity of thc model used in [8], namely to consider 
only intra-methyl dipolar interactions. 

c, = 0. 

4. Discussion 

We have applied the modern theoly of high-field nuclear spin-lattice relaxation to 
the specific problem of rotating methyl groups in solids. This way we showed that 
symmetry-conserving transitions do not contribute to spin relaxation of single methyl 
groups in accord with Haupt’s [32] finding. The static spin Hamiltonian in our 
treatment corresponds to the so-called ‘time-averaged’ spin-lattice Hamiltonian in 
semiclassical spin relaxation theory. 

Our formulation of the problem is chosen in such a way as to show that the 
transition probabilities relevant for spin relaxation are determined by exactly the same 
spectral functions as is the incoherent dynamical structure factor S(Q << T - ~ , w ) .  
Since. this is true for all elements of the relaxation kernel (13), not only the relaxation 
rate of the Zeeman energy, T;’, but also all other spin relaxation rates (e.g. the 
relaxation of the quadrupolar energy in the CD, case, T;d) are related intrinsically 
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to S( Q r-', U).  In all cases the spin relaxation rates are linear functions of the 
spectral fUnCtiOns SF;F,'(u) at some definite multiples of the Larmor frequency U*. 
Owing to the different spins of CH, and CD,, the spin-lattice relaxation time is a 
measure of different transition lines in an INS experiment. 

In the case Of CD, it would be interesting to  perform INS and NMR experiments 
on systems with large tunnelling frequencies in order to obtain detailed information 
about the shape and the width of the E' H Eb line and also about the lines that 
do not i n v o l ~ ~  symmetry-changing transitions. In addition to the already quoted 
possibility of an analysis of the lineshape, a comparison of the linewidths qNMR and 
TINS can be used for testing Wiirger's [18] result that symmetryconsewing transitions 
do  not lead to a line broadening. If this holds, ;rNMR should equal In the 
case of a finite broadening of the Or - Or lines, the quasi-elastic widths extracted 
from deuteron 7'' experiments are. expected to be smaller than those obtained from 
INS experiments at higher momentum transfer (Q 2 r), since symmetry-conserving 
transitions do  not contribute to deuteron TI a t  all. 

Deuteron TI experiments can also be helpful in a more detailed analysis of the 
isotope effect in systems of coupled methyl groups, such as (CH,),SnCl, [45] or 
lithium acetate [&I. In the case of coupled pairs of methyl groups, the spectral 
function contains a transition line at very low frequency due t o  a splitting of the 
E'E' and EaEb states in these systems [47], which is not easily resolved by means 
of INS. A study of the frequency dependence of deuteron TI at low temperatures 
can provide this information if the mentioned splitting does not exceed the range of 
accessible Larmor frequencies. 

The reason for the direct comparability of deuteron NMR and INS experiments lies 
in the fact that the dominant interaction in the case of deuterons is the quadNpOh1 
interaction. This is a single-particle interaction from an NMR p i n t  of view and thus 
allows the observations of single methyl rotors as in incoherent neutron scattering. 
This also means that deuteron T, experiments are able to distinguish inequivalent 
methyl groups in a crystal, as has recently been demonstrated for a-crystalline toluene 

In CH,, the situation is quite different. The dipolar interaction is a many-particle 
interaction. Thus, dilute systems are to be considered in order to render NMR 
experiments directly comparable to INS experiments. In this case, TI is a measure 
of the shape and the width of the A U E lines in the whole temperature range 
of experimental interest. Therefore, a combination of INS and NMR experiments 
on diluted CH, systems would yield information about the structure factor S( Q << 
T-',w) also in the temperature range where the lines in an INS experiment have 
merged into a single quasi-elastic feature. Once the width of the A ++ E lines is 
obtained from proton NMR, this can be used as input for the determination of the 
E' ++ Eb linewidth from INS experiments as proposed by Wiirger [49]. Such an 
analysis of data has not been done until now to the author's knowledge and would 
be desirable for a deeper understanding of the broadening mechanisms in the 'high'- 
temperature range. 

Furthermore, the importance of dipolar interactions between methyl protons and 
surrounding protons has been pointed out and we gave explicit expressions for these 
contributions to TI in O ( ( r / R i ) * ) .  These might be helpful for more quantitative 
interpretations of proton NMR TI data than has been possible up to now. Using our 
equations (51) and (52), the intermolecular dipolar interactions can be determined 

[&I. 
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up to fourth order in  (r /Ri) ,  if the proton-proton distances of the compound 
under study are known. The validity of the truncation of the series expansion used 
in our calculation could be checked by careful measurements of the temperature 
dependence of high-field NMR spectra, since temperature effects on these are expected 
in O ( ( r / R i ) 6 ) .  From (53) and (54) it is evident that the intermolecular contribution 
to A H E transitions is generally small. Thus, for systems with large tunnelling 
frequencies the spin-lattice relaxation time is mainly determined by intermolecular 
dipolar interactions, whereas the spin conversion time is a measure of the intra-methyl 
dipolar interactions. 

When pure CH, systems are considered, the relation between T, and S( Q < 
r - ' ,w)  is violated. From our treatment of the intermolecular dipolar interactions, 
one could conclude chat in this case the situation for systems with large tunnelling 
frequencies would be comparable to the CD, case, the difference being mainly in 
the different ranges of Q values. Note, however, that we did not allow for a 
direct coupling of the intermolecular dipolar interactions to the phonons. Here, 
a combination of INS and NMR experiments might be able to test the validity of this 
approximation. 

In conclusion, we have shown that specific combinations of INS and high-field 
NMR relaxation experiments can yield more detailed information about the motional 
spectrum of methyl groups than either experimental method alone. Such experiments 
could resolve some of the problems of each of the methods and allow more direct 
comparison to theoretical approaches to the problem than has been possible up to 
now. 
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Appendix 1. The spin-lattice coupling Hamiltonians H i  

In the principal-axis-fixed frame 'P', the quadrupolar interaction of a deuteron 
U = 1,2,3 with an axially symmetric electric field gradient (EFG) can be written 
as 

[Hz(P)](") = d Q [ 3 ( 1 p ) ) 2  - (Z'"')2] (Al.l) 

where 

d, = e2qQ/4. 

Here, eq denotes the non-vanishing component of the EFG [29, 301 and Q the 
quadrupolar moment of the deuteron. 

The dipolar interaction between two protons U and z1 reads as 
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where yI is the gyromagnetic ratio and r("") the separation of the protons and 
represent3 the z axis of the principal-axis-ked frame. The operators 12) are spin 
operators acting on the spin states of particle U. 

In an arbitrary frame of reference the Hamiltonians (Al.l) and (A1.2) read in 
irreducible tensor operator notation [29] 

2 

(Hk)''' = d A 1 (-Um4:2", (L) ) q m ( X )  ( b )  (A1.3) 
m=-2 

where X = D means dipolar interaction between two protons and X = Q means 
quadrupolar interaction in the case of deuterons. In the first case k stands for the 
pairs of protons considered (e.g. the pair U and U) and in the latter k stands for the 
deuteron under study. Pansforming the ~:i( fly)) successively into a crystal-fixed 
frame '(7, where the z axis coincides with the methyl rotation axis, and then into 
the laboratory-fixed frame 'L!, where the z axis is determined by the direction of the 
external magnetic field, yields: 

(A1.4) 

where fL:k)[PC] (0 ,  e,, n-@y))  defines the orientation of the 'P' system in the 'C' 
system and fl, z (au, &O) defines the orientation of the 'L! system in the 'C' system. 
Note that 0, is independent of the particles considered, since the methyl rotation axis 
is the z axis of the 'C' system. For CD,, 0, is given approximately by the tetrahedral 
angle 0, (cos@, = 1/3); and for CH,, 0, = n/2. In the rigid rotor approximation 
11, 1.51 we can write for the azimuthal angles ay): = 4, @(:I) = 6 + 2rr/3, 

(deuterons) and for X = D ( I , I I , I I I )  
@(In) A = 4-2n/3 ,where  @ =  f (&+q52++3)  and for X = Q ( I , I I , I I I ) = ( l , 2 , 3 )  

((1,2),(2,3),(3,1)) (pairs of protons). 
Symmetry adaptation of the Hamiltonian is achieved by defining (cf (17)) 

Here, I(. O , l , - 1  for r 
are obtained, where 

A,Ea ,Eb.  This way the R&,(0,;Qu;+) given in (18) 

vu(@,) = (3 / Jz ) (3cos0 ,  - 1) 

U,(@,) = (3&/2)sin(20,) ~ ~ ( 0 , )  = ( 3 h / 2 ) s i n Z 0 , .  (A1.6) 

For CH,, one has (0, = n/2)  : v,(n/2) = -(3/&),ul(n/2) = O,u2(n/2) = 
3&/2. If we approximate 0, by e,, we have for CD,: vu(OT) = -fi,vl(O,) = a, v2(OT) = 4/&. Note that in the case of CH, operators of the type ei$ 
do not contribute, since v , (n /2)  = 0. The svmmetry-adamed spin operators are of .. . , 

similar type as given in (A1.5). Explicit expressions for these operators may be found 
in [29, 32, 381. 



Here we have used the abbreviation: 

q := ( l / ~ ) v , ( o Q ) D g ~ o ( s 2 u ) .  (M.4)  

Insertion of the tetrahedral angle yields q = f (  1 - 3cos’ Po). 

written Ir,m) r, quadrupolar energy, m). 
In the text, we have omitted the label q for the quadrupolar energy and have 

Appendix 3. The Markovian limit of the relaxation kernel 

From equations (29) and (13) one has the following expression for the relaxation 
kernel occurring in the equation of motion (15) in symmetrized form: 

A 
I C ~ ~ , , , ( S )  = ix @;m,;rcm(S)(ot,rcm - o,,r;m,)(02,rcm - 02, r ;~ , ) ,  ( ~ 3 . 1 )  

rm r‘m‘ 

Diagonalization of the matrix K(s)  yields the eigenmatrk A(s)  and eigenoperators 
Oh, which are linear combinations of the originally chosen operators 0,. Omitting 
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the superscript X in the following, we have for the elements of A ( s ) ,  using (30): 

2 x (7 + S)/t(=Y + s)Z+  [CJ- ("- m)w,] ) 

Here, T' is one of the broadenings y or ?., and CJ is either w , ( T )  or zero, cf 
equation (30). Xr,r, reflects the detailed balance of the spectral functions and in the 
high-temperature approximation for A,, it is given by X,,.,  = (X,,,..,,r)L. We have 
restricted ourselves to low temperatures in (A3.2) since a t  higher temperatures 4 >> s 
is easily fulfilled in NMR experiments. Then the dependence of A,( s) on the 'inverse 
measuring time' s [23] can trivially be neglected. Thus we concentrate on situations 
where 4 is of the order of or smaller than s. The only restriction we have to make 
is to choose s such that uz >> [ S I  is fulfilled. Since wz s, this situation is 
met in almost all spin-lattice relaxation experiments. Thus, we are allowed to replace 
( 7 + ~ ) / { ( 7 + s ) ~ + [ L j - ( m ' - m ) w , ] ~ }  by ( = / + s ) / [ G - ( m ' - m ) w , l z  in (A3.2) 
everywhere except for resonances CJ = w z ,  2w,. These will be considered explicitly 
later. The above replacement allows us to write 

A d s )  = A,(s )  + A d o )  ('43.30) 

A,(s)  is of the order O([dA/(CJ - nw,)I2) << 1. The equation of motion (15) then 
reads: 

(Aeqd;(s)h = [s + A,(s)  + A~(0)l-l(Aeq@(O))i  E [ S  t A,(O)I-'(Aeq0i?(O))i 

(A3.4) 

yielding an exponential law for the time evolution of t h e  operators A,,O;(t), 
(AeqOi( t ) ) i  = c,exp[A,(O)t] in second order with respect to d,. 

Next, we consider a resonance w , ( T )  = nUwz, nu = f l ,  f 2 .  Since this is 
of relevance only for A - E transitions, we have to use the  broadenings 7. We 
decompose A,(s )  in the following way: 

A l t ( s )  = B k ; n o ( ~  + 5) + A ~ ; , , ( Y  t SI-' (A3.50) 

where 
2 

Bkin@ := A, ; , , [w t (T)  + 7 ~ w , 1 - ~  (A3.5b) 
n=-2 
n#no 
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and we have 

Ak(0) = Bl i ; , ,~  + A k ; , o ~ - '  (A3.k) 

in this case. Here Bkcn0 is of the order O ( ( d , / w , ) 2 )  *: 1. Neglecting this small 
term in the equation of motion, we have in second order with respect to d,: 

for times that are sufficiently long to determine Ak(0). 

transition probabilities does not provide a problem in the high-field approximation. 
Consequently, the limit s - 0 performed in the text in the calculation of the 

Appendix 4. The intermolecular dipolar interaction 

Inserting equation (42) for H g ( i )  into the series expansion ( R i ,  = Rj  - T " ) :  

(A4.1) 

where the subscript '(0)' means that the derivative has to be taken at the coordinates 
( m i ,  Ri), yields, using the gradient formula (43) and the definition (44) for the 
coupling strength 

(A4.h)  

X ; ( n )  := - ~ ~ [ C ( 1 , 2 , 3 ; l , n ) C ( 1 , 3 , 4 ; - l , n +  1 )  

+ C(1,2,3;-l,n)C(1,3,4;l,n- l ) ]  (A4.k )  

xi3( n )  := zty &[ C( 1,2,3; T I ,  n)C( 1,3,4; 71, n 1)C( 1,4,5; 71, n 7 2)]. 

(A4.36) 
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The E-symmetric operators are given by 

i+E,"($q4)(") = 0 (A4.Q) 

with 

X F ( n ) : =  5&C(1,2,3;-l,n) (A4.5~) 

X F ( n )  := f&C(1,2,3;l ,n)C(1,3,4; 1 , n  + 1)  (A4.56) 

x,E(n):= -E &[C(l,2,3; 35 1 ,  n)C(1,3,% -1 ,  n + 1)C(1,4,5; -1 ,  n) 

+ C(1,2,3;- l ,n)C(1,3,% 1,n - l )C(l ,4 ,5;-1,n)  

+ C( 1,2,3; -1 ,  n)C(  1,3,4; - 1 ,  n - 1)C( 1,4,5; 1, n - 2)] (A4.5~) 

(A4.6) i+F m ( i ; + ) ( b )  = ( - l ) " [ ~ ~ - _ ( ; ; + ) ( b ) ] * .  

Nore added in prooJ In the meantime a thenrelical work on the NMR spectra and spin-lattice relaxatinn 
rates of CD) groups has been published by Heuer [SO]. He shaved that for small momentum transfer and 
high rotational potentials. strong relations exist between the relaxation rates and the finite temperature 
spectra of CD) groups and the inmherent scattering function. His results concerning the spin-lattice 
relaxation rata coincide with the small momentum transfer and high rotational potential limit of our 
expressions given in section 3.3. 
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